轨道保持

  • 网络orbit maintenance
轨道保持轨道保持
  1. 卫星轨道保持的一类控制模型

    A Control Model for Satellite Orbit Maintenance

  2. 并且经过初轨捕获和轨道保持的仿真计算,表明采用本文的a,e,ω联合控制的方法能够达到较高控制精度,在工程实践上是可行的。

    Through computation and simulation of orbit capture and orbit maintenance , it has demonstrated that the method of a , e ,ω united control can achieve high precision result , it is feasible in practical application .

  3. 本文提出使用姿态敏感器作为测量仪器,结合星载计算机来完成自主卫星导航(ASN)和轨道保持的方法。

    In this paper , the technique , which uses the attitude sensors as measuring instruments , in combination with onboard computer to perform Autonomous Satellite Navigation ( ASN ) and trajectory maintenance is proposed .

  4. 针对内编队卫星展开内编队轨道保持控制方法研究。首先,介绍了论文的研究背景,对国内外编队构型保持控制技术研究现状、与内编队应用领域类似的Drag-Free控制技术研究现状进行了综述。

    Inner formation orbit keeping control methods are studied based on inner formation satellites . Firstly , the research backgrounds are introduced . The research states of both formation configuration keeping control technologies and Drag-Free control technologies are summarized .

  5. 卫星轨道保持的非线性鲁棒自适应变结构控制

    Nonlinear Robust Adaptive and Variable Control for Trajectory Maintenance of Satellite

  6. 月球重力场及低轨环月卫星轨道保持仿真分析

    Research on Lunar Gravity Field and Maintenance of Lunar Satellite Orbit

  7. 内编队轨道保持控制是一个强干扰控制问题。

    Inner formation orbit keeping control is a control problem with strong disturbances .

  8. 卫星轨道保持的分散容错控制

    Decentralized fault tolerant control for trajectory maintenance of satellite

  9. 绕飞弱引力小天体的轨道保持控制

    Orbits Maintenance Control Flying around a Small Body

  10. 伴随卫星轨道保持

    On Concomitant Satellite Orbital Maintenance

  11. 对内编队模型预测控制系统进行了仿真,仿真结果表明,模型预测控制方法可用于内编队轨道保持控制,能够保证内编队卫星的稳定飞行。

    And results show that model predictive control method , which keeps inner formation satellites flying steadily , is suitable for inner formation orbit keeping .

  12. 霍尔推力器以其体积小,重量轻,比冲高,寿命长等优点广泛应用于小卫星的姿态控制和轨道保持等方面。

    Hall thrusters have been used widely in orbit correction and station-keeping of geostationary satellites for the advantage of small size , light weight , high specific impulse , and long life .

  13. 内编队轨道保持控制系统保证内卫星在外卫星腔体中心,是实现内编队重力场测量卫星系统任务目标的基础和关键。

    Inner formation orbit keeping control system , which is very important for accomplishing the mission of detecting gravity field , keeps inner satellite flies in the center of the cavity of outer satellite .

  14. 随着新世纪火星探测热潮的到来,火星探测器近心点制动与轨道保持问题成为了研究热点。

    With the arrival of the upsurge of Mars Exploration in the new century , it is going to become hot topic that Mars probe brakes near the Mars and keeps its orbit in a long time .

  15. 本文主要研究时滞微分系统的T-B奇性和由此产生的同宿轨与Hopf分歧性质,以及离散化格式对时滞微分系统的T-B奇性、Hopf分歧与同宿轨道的保持性(继承性)。

    In this dissertation , we lay our efforts on the research of T-B singularity and accompanying bifurcation properties in delay differential systems , and the retentivity of Hopf bifurcation , T-B singularity and homoclinic orbit in numerical discretization of delay differential systems .

  16. 为保证磁浮列车安全高速运行,磁浮轨道必须保持清洁和良好的状况。

    The maglev track must be kept clean and good situation for the operations of maglev vehicle .

  17. 导出了两种典型磁场分布情形下,电子感应加速器中电子轨道半径保持恒定所满足的具体条件。

    This thesis introduces in detail how to keep betatron electron track radius invariable in two conditions of typical magnetic field distribution .

  18. 对于全球重力场测量卫星而言,其姿态和轨道的保持精度直接影响着全球重力场测量的精度。

    For the gravity field measurement of satellite , the maintained precision of the gravity field measurement satellites attitude and the orbit affect the measurement precision directly .

  19. 作为一名领袖,你的工作就是每天都在大体正确的轨道上保持前进,而不是在一些大问题上跑偏,或是发现自己深陷错误的推断中难以自拔。

    As a leader , your job is to be generally correct everyday and make incremental progress , rather than being specifically wrong about big things and find yourself stuck in false assumptions .

  20. 基于MEMS技术的微型推进系统成本低、质量轻、体积小、集成度高,卫星间相对轨道位置的保持、高精度的姿态控制对其提出较高的要求。

    Micro-propulsion system based on MEMS technology has some advantages of low cost , low mass quality , small size , high integrated level . The relative position between the satellites orbits and high precision of the attitude control put forward higher requirement to Micro-propulsion system .

  21. 其次推导出一个工程实用在轨道平面内保持点轨迹椭圆方程;

    A useful ellipse equation in relation the trajectory of a station keeping point in an orbital plane is obtained .

  22. 对非合作目标编队飞行,即使在无目标星的相应反馈信息的情况下,论文中设计的参数自适应控制方法仍然能够完成任务要求的相对轨道构形保持控制。

    For the uncooperative formation flying , the adaptive control law can complete the task even without information feedback from the target satellite .

  23. 适当调整每颗卫星的轨道要素可以保持卫星群的构形在空间不变,或者对地(近赤道观测站)不变。

    The group geometry in space ( or reference to ground station ) can be keeped unchanged with a simple modification of the orbital elements of each member .

  24. 地球静止轨道通信卫星位置保持原理及实施策略

    The Principle of Station-keeping and Maneuver Strategies of Geostationary Communication Satellites

  25. 最后讨论保持点的动力学特性和轨道摄动对保持点的影响。

    Dynamic characteristics of the station keeping point and orbit perturbations are finally discussed .

  26. 空间推进器是卫星的姿态控制及轨道的修正、保持和机动的重要执行元件。

    Spatial thruster is the important component for orbit maintenance , station keeping as well as special attitude control of the microsatellite .

  27. 宇宙万物各循轨道运行,彼此保持一定的秩序,毕竟也都有赖于引力的作用。

    But it is also gravity pull that keeps our world together , that keeps the planets in their orbits and our universe in order .

  28. 当轨道一段没被占据时,连接两个轨道的电源保持两边电压正常。

    A power source connected to the two rails normally maintains a voltage between them while they are unoccupied .

  29. 地球同步轨道通信卫星的轨道管理是通过轨道测量、轨道确定和轨道保持(机动)完成的。

    The management of geosynchronous communication satellite is fulfilled through orbit measuring , orbit determination and orbit keeping ( maneuver ) .

  30. 起重机的理想运行情况应该是所有车轮均在轨道上作无滑移的滚动运行,且轮缘不与轨道相接触,即轮缘与轨道保持一定的间隙。

    The ideal working circumstances of the crane should be that all the cartwheels are rolling without slipping on the rails , i. e. the working cartwheels ' edges do not contact with the rails , namely there are clearance between the cartwheels and the rails .