正合列
- 【数】exact sequence
-
本文通过六项正合列计算出,在强拟凸域上,它的拓扑边界上连续函数代数的K(1-)群同构于区域上Toeplitz代数的K1-群与Z的直和。
In this paper , from the six-term exact sequence , it is proved that the direct sum of Z and K1 - group of a Toeplitz algebra is always isomorphic to the topological K1 - group of the boundary of the relative domain .
-
对短正合列作了进一步讨论,得出“对于左R-模上短正合列,在环同态和Abel群同构条件下保持正合性”的结论。
Properties of short exact sequences are developed . The author proves that short exact sequences as left R - module maintain the exact property on condition of homomorphisms of rings and isomorphisms of Abel groups .
-
Xi研究了具有同调理想的代数的Hochschild上同调,并证明了若Φ:A→B是同调满射,我们可以用一个长正合列将H~i(A)和H~i(B)联系起来。
Xi researched the Hochschild cohomology of algebras with homological ideals in 2000 and proved that , if Φ : A → B is a homological epimorphism , Hi ( A ) and Hi ( B ) can be connected with a long exact sequence .
-
管范畴中的短正合列的进一步研究
Further Discussion of Short Exact Sequence in Tube Category
-
两类矩阵环上的短正合列
Short Exact Sequences Over Two Kinds of Matrix Rings
-
辛流形上的正合列;
An exact sequence on Symplectic manifold ;
-
首先证明了S-系及其同态的正合列的一些结果。
In this paper we proved some results of exact sequences of S - systems .
-
在具有终对象的范畴内的正合列
Exact Sequences in Categories with Terminal Objects
-
正合列是模论中研究函子问题的基本工具。
The exact sequences are the basic means on studying the functors of module theory .
-
短正合列的若干性质
Some Properties of Short Exact Sequences
-
短正合列的弱可裂
Weak Splitting of Short Exact Sequences
-
我们的研究主要采用同调的方法,许多论证用到胞腔代数上投射模所具有的滤过性质和一些涉及胞腔模的正合列的维数转移。
The approach adopted here is largely homological , based upon the cell module filtration of projective modules and the dimension shifting of some exact sequences involving cell modules .