辛空间

  • 网络symplectic space
辛空间辛空间
  1. 欧氏空间与辛空间关于伪辛空间的内蕴和扩张

    Internal Implication and Expansion of Euclidean Space and Symplectic Space for Bogus Symplectic Space

  2. 辛空间与其对偶空间

    The Symplectic Space And Its Dual Space

  3. 辛空间上可检错Pooling设计的讨论

    Discussion of Pooling Designs with Error-Detecting in Symplectic Spaces

  4. 进一步,Fq上2v+δ维伪辛空间的对偶极图Aδ的相应问题也被解决。

    Moreover , the corresponding problem of the dual polar graph A δ of ( 2v + δ) - dimensional pseudo-symplectic space over Fq are also solved .

  5. 设Fq是一个q元域,用Fq上仿射辛空间中的全部超平面构作了类数为3的结合方案,并计算了参数。

    Let be the finite field with elements , ASG be the - dimensional affine - symplectic space . Taking the set of all hyper-planes ASG as the set of treatments , we construct association scheme of class 3 , and compute their parameters .

  6. 伪辛空间中的运动与线性伸缩的构作研究

    The motion of bogus symplectic space and construction of linear extension

  7. 基于辛空间的具有仲裁的认证码的构造

    A construction of authentication codes with arbitration based on Symplectic spaces

  8. 论伪辛空间概念的形成与伪辛几何的建立

    Appearance of bogus symplectic space and extablishment of bogus symplectic geometry

  9. 辐射迁移方程&一个K-辛空间上的正则方程

    Radiative Transfer Equation & A Canonical Equation in K - Symplectic Space

  10. 有限域上的仿射伪辛空间及应用

    Affine - pseudo - symplectic Space and Applications

  11. 伪辛空间的分化与扩张

    Polarization and Expansion of Bogus Symplectic Space

  12. 利用2v+2维伪辛空间中1维全迷向子空间构作结合方案

    Constructing association scheme with 1-dimensional totally isotropic subspace in 2v + 2-dimensional pseudo symplectic space

  13. 伪辛空间的分解

    The Decomposition of Bogus Symplectic Space

  14. 基于该变分原理,提出一种称之为辛空间有限元-时间子域法的辛算法。

    Based on this variational principle in phase space , a symplectic space finite element_time subdomain method is presented .

  15. 有限域上奇异辛空间、奇异酉空间和奇异正交空间(特征≠2)中子空间的对偶子空间的类型被确定。

    Types of dual subspaces are determined in singular symplectic , unitary , and orthogonal spaces over finite fields .

  16. 论述欧氏空间、辛空间、伪辛空间的本质属性及演变过程。

    The essential property and developmental course of Euclidean space , symplectic space and bogus symplectic space are studied .

  17. 在辛空间中,长圆柱壳的临界屈曲荷载和屈曲模态归结为辛本征值和本征解问题。

    In the symplectic space , the critical buckling loads and buckling modes of the problem are substituted by eigenvalues and eigensolutions .

  18. 引入对偶变量,进一步建立使问题化为在以混合变量组成的全状态辛空间中的控制正则方程和初边条件。

    By introducing dual variables , the dual governing equations and boundary conditions , which are composed by mixed variables under whole state space , are obtained .

  19. 通过对伪辛空间的分析解剖,得出伪辛空间是辛空间保度量的扩张,也是欧氏空间的扩张,而辛空间与欧氏空间是伪辛空间的内蕴空间的结论。

    Through the analysis of bogus symplectic space , a conclusion is drawed that bogus symplectic space is not only the expansion of symplectic space invariable magnitude but also the expansion of Euclid-ean space , symplectic space and Euclidean space are the internal spaces of bogus symplectic space .

  20. 由Hamilton算子矩阵离散后得到Hamilton矩阵,运用共轭辛子空间迭代法找出主要的本征向量,展开本征向量表示口径上实际的电磁场分布。

    After dispersing , Hamilton operator array turns to Hamilton array . Seeking Main eigenvalue by Hamilton adjoint symplectic child space iteration method and use the eigenvector expansion to express actual field .

  21. 代数黎卡提方程的求解与辛子空间迭代法

    The solution of algebraic Riccati equation and symplectic subspace iteration method

  22. 复辛线性空间的辛直和分解

    Symplectic Direct Decomposition of Complex Symplectic Linear Spaces

  23. 在辛几何空间中直接描述正则方程和对应的边条件。

    The dual equations and conditions of the corresponding boundary are obtained directly in the symplectic space .

  24. 通过引入对偶变量,将平面正交各向异性问题导入哈密顿体系,实现从欧几里德几何空间向辛几何空间的转换。

    Based on the dual variables , the Hamiltonian system theory is introduced into plane orthotropy elasticity , the transformation from Euclidian space to symplectic space is realized .

  25. 给出了复辛线性空间的辛直和分解,这些结果为将来进一步研究复辛矩阵的标准形打下了基础。

    In this paper , the symplectic direct decomposition of complex symplectic linear spaces is given . These results laid foundations for further research on normal forms of complex symplectic matrices .

  26. 在由原变量位移、电势和磁势以及它们的对偶变量纵向应力、电位移和磁感应强度组成的辛几何空间中,形成辛对偶方程组。

    In symplectic geometry space with the origin variables displacements , electric potential and magnetic potential , as well as their duality variables lengthways stress , electric displacement and magnetic induction , symplectic dual equations are employed .

  27. 基于哈密顿体系辛几何算法求解空间地基问题

    Hamilton system and symplectic algorithm for space foundation

  28. 有限辛群作用下子空间轨道按和生成的格

    Lattices Generated by Joins of Elements in Orbits of Subspaces Under Finite Symplectic Group

  29. 伪辛群作用下子空间轨道生成的格的同构条件

    The isomorphic conditions of some lattices generated by transitive sets of subspaces under finite pseudo-symplectic groups

  30. 该方法对时域的离散采用了能够保证系统的相空间体积不变和总能量不变的辛格式,对于空间的离散采用中心差分格式。

    This method disperses the Maxwell functions in the time domain based on symplectic transformation , which can preserve the exchangeability of the Hamilton system for phase space and the total energy .