守恒量

  • 网络conserved quantity
守恒量守恒量
  1. 讨论该系统的Lie对称性变换和守恒量。

    Lie symmetries and conserved quantity of this systems were given .

  2. Lagrange系统Mei对称性直接导致的一种守恒量

    A kind of conserved quantity of Mei symmetry for Lagrange system

  3. 非完整非保守力学系统在相空间的Lie对称性与守恒量

    Lie Symmetries and Conserved Quantities of Nonconservative Nonholonomic Systems in Phase Space

  4. 具有单面完整约束的有多余坐标力学系统的Lie对称性与守恒量

    Lie Symmetries and Conserved Quantities of Mechanical Systems of Remainder Coordinates with Unilateral Holonomic Constraints

  5. 研究转动变质量相对论系统的Lie对称性和守恒量。

    The Lie symmetries and conserved quantities of the rotational variable mass relativistic system were studied .

  6. 研究了相对论性转动变质量非完整系统的Lie对称性和守恒量。给出了相对论性转动变质量非完整系统的运动微分方程。

    The differential equations for the motion of a nonholonomic system with a relativistically rotational variable mass were presented .

  7. 研究Lagrange系统的对称性与守恒量。

    The symmetry and the conserved quantity of a Lagrange system are studied .

  8. 一般完整系统Mei对称性的共形不变性与守恒量

    Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems

  9. 约束力学系统的Mei对称性与Mei守恒量

    Mei Symmetry and Mei Conserved Quantity for Constrained Mechanical Systems

  10. 广义Hamilton系统的一类不变性与守恒量

    Invariance and Conserved Quantity of the Generalized Hamilton System

  11. 超细长弹性杆的Mei对称性及其Noether守恒量

    Mei symmetries and the Noether conserved quantities of super-thin elastic rod

  12. 一阶Lagrange系统的Noether对称性和守恒量

    Noether symmetries and conserved quantities of first order Lagrange systems

  13. Lagrange-Maxwell系统的Lie对称性与守恒量

    Lie symmetries and conserved quantities of Lagrange-Maxwell mechanical systems

  14. 完整系统Appell方程Mei对称性的结构方程和Mei守恒量

    Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems

  15. 微扰Kepler系统的守恒量与对称性

    The conserved quantity and symmetry of perturbed Kepler system

  16. 非完整变转动惯量相对论系统的Noether守恒量

    Noether 's conserved quantities of nonholonomic variable moment of inertia relativistic systems

  17. 利用微分方程在无限小变换下的不变性条件,研究奇异Lagrange系统的Lie对称性与守恒量。

    The invariance of the ordinary differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities for the singular Lagrange system .

  18. 变质量完整力学系统的形式不变性与非Noether守恒量

    Form Invariance and Non-Noether Conserved Quantity for Holonomic Mechanical Systems with Variable Mass

  19. 相对论性转动变质量非完整可控力学系统的非Noether守恒量

    Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass

  20. 利用时间不变的无限小变化下的Lie对称性,研究变质量非完整力学系统的一类新的守恒量。

    Using the Lie symmetry under infinitesimal transformations in which the time is not variable , we studied a new conserved quantity for the nonholonomic mechanical systems with a variable mass .

  21. 我们由其上的辛结构定义了其上的Poisson括号,并求出了在这个括号意义下,守恒量所构成的李代数。

    Induced by the symplectic structure , we have obtained the Poisson bracket and the Lie algebra for the conservative quantities with respect to the Poisson bracket .

  22. 非完整系统Tzénoff方程的Mei对称性和守恒量

    Mei symmetry and conserved quantity of Tz é noff equations for nonholonomic systems

  23. 低级晶系Patterson法多解的一般形式(Ⅱ)多解型相角关系式静球对称体系的五维守恒量

    The general form of multi-solution in Patterson method for low symmetric system (ⅱ) phase relationships of multi-solution type

  24. 本文用Lie方法研究了不对虚位移附加任何限制条件的非完整系统的对称性和守恒量。

    In this paper , the Lie symmetries and the conserved quantities of the nonholonomic dynamical systems without any additional restrictive condition to its virtual displacement are studied . Methods : Four colorectal and breast cancer cell lines were cultured in vitro .

  25. 利用运动微分方程在无限小变换下的不变性,建立相对论性转动变质量系统的Lie对称确定方程,得到结构方程和守恒量。

    By using the invariance of the differential equations under the infinitesimal transformations , the determining equations of the Lie symmetries of relativistic rotational variable mass system are built , and the structure equation and the conserved quantities of the Lie symmetries are obtained .

  26. 在相对论框架里,太阳系天体的质量应当定义为BD质量,它们的相对变化不超过10(-19),可视为守恒量;

    The mass of a celestial body in the solar system should be defined as its BD mass that changes relatively in an amount less than 10-19 and could be considered as a constant .

  27. 研究有多余坐标的完整系统的Lie对称性与守恒量,方法利用常微分方程在无限小变换下的不变性,建立系统Lie对称性的确定方程和限制方程。

    Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates . Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems .

  28. 研究一类浅水波方程即广义强色散DGH方程,通过转化为双线性形式,得到了双Hamilton结构和一些守恒量。

    One type of shallow water equations , namely , generalized DGH equation with strong dispersive term is introduced . By double linear formation , double Hamilton structure and some conservation laws are obtained .

  29. 在此基础上对三次非线性Schrodinger方程,提出了一种精度为O(r2+h2)的差分格式,证明了该格式保持了连续方程的两个守恒量,且是收敛的与稳定的。

    Next , we proposed a conservative finite difference scheme with precision O ( r2 + h2 ) for the nonlinear Schrodinger equation . It is proved that the scheme preserves two conservative quantities and is convergent and stable .

  30. 首先,利用方程的守恒量或能量函数,研究其解的某些特殊性质。然后,在Sobolev空间上用傅立叶变换把微分方程转换成积分方程。

    Firstly , we study the certain position of their solutions by the conservation equations or the energy function . Secondly , we change the equations into the equivalent integral equations on Sobolev space by Fourier transform .