高斯混合模型
- 网络gaussian mixture model;Gaussian Mixture Modeling;gmm
-
通过EM算法优化估计高斯混合模型的参数,得到了确定的高斯混合模型,从而实现对电梯交通流的在线预测。
The EM algorithm is utilized to estimate the parameters of GMM to predict elevator traffic flow on line .
-
基于高斯混合模型和Renyi熵的图像分割方法
Image segmentation approach based on GMM and Renyi entropy
-
多元高斯混合模型脑MR图像去壳模型
Brain MR images skull stripping model based on multi-Gaussian mixture model
-
基于改进的高斯混合模型脑MR图像分割
The brain MR image segmentation based on an improved Gaussian mixed mode
-
基于高斯混合模型的脑部MR图像自动分割
Auto Segmentation of Brain MR Image Based on Gaussian Mixture Model Diffusion
-
基于多元信息的高斯混合模型左心室MR图像分割
MR Image Segmentation of Left Ventricle Based on the Multi-information Gaussian Mixture Model
-
基于高斯混合模型的人脑MR图像分割新算法研究
On new segmentation algorithm of brain magnetic resonance images based on Gaussian mixture models
-
高斯混合模型改进的活动轮廓模型MRI分割
MRI Segmentation via Active Contour Model Improved with Gaussian Mixture Model
-
基于多尺度小波变换的高斯混合模型SAR图像去噪
SAR Speckle Reduction Based on Multi-Scale Wavelets and Gauss Mixture Model
-
基于高斯混合模型的EM学习算法
A Study of EM Learning Algorithm Based on Gaussian Mixture Model
-
高斯混合模型聚类中EM算法及初始化的研究
Algorithm EM and Its Initialization in Gaussian - Mixture-Model Based Clustering
-
利用高斯混合模型的SAR图像目标CFAR检测新方法
A Novel CFAR Algorithm for Detecting Targets in SAR Images Using Gaussian Mixture Model
-
运用EM算法来实现高斯混合模型的聚类,如何初始化EM参数是一个关键的问题。
When EM algorithm is utilized to realize Gaussian-Mixture-Model based clustering , how to initialize it becomes a pivotal issue .
-
基于复高斯混合模型的鲁棒VAD算法
Robust Voice Activity Detection Algorithm Based on Complex Gaussian Mixture Model
-
本文综合考虑了基于内容的图像检索及SAR图像的特点提出了基于高斯混合模型分类的SAR图像检索方法。
This paper considers the characteristic of content-based image retrieval ( CBIR ) and SAR image together , proposing a method of SAR image retrieval .
-
实现了一个基于高斯混合模型(GMM)的说话人辨识系统。
This paper realized a speaker recognition system based on Gaussian Mixture Models ( GMM ) .
-
当噪声程度达到9%时,K均值法、模糊C均值法和高斯混合模型的分割准确率平均下降了4%。
When the noise is severe such as 9 % , the segmentation accuracy of K-means clustering algorithm , fuzzy C means and method based on Gaussian mixture model decrease 4 % averagely .
-
基于高斯混合模型的两级Mel弯曲维纳滤波。
GMM-based two-stage Mel-warped Wiener filter .
-
本文采用Gabor滤波器的输出结果作为特征,高斯混合模型(GMM)作为分类器对织物瑕疵分类。
We adopt the output of Gabor filters as feature and Gaussian mixture model ( GMM ) as the classifier .
-
利用高斯混合模型(GMM)由窄带语音的LSF参数扩展得到高带语音的包络谱信息;
Spectrum envelope of high-band speech is obtained from the LSF parameters of narrow-band through GMM .
-
在众多的说话人识别技术中,本文主要研究了基于Mel频率倒谱系数(Mel-FrequencyCepstrumCoefficients,简称MFCC)和高斯混合模型(Gaussianmixturemodel,简称为GMM)的说话人识别系统。
This paper focuses on the speaker recognition system based on Mel-Frequency Cepstrum Coefficients ( MFCC ) and Gaussian Mixture Model ( GMM ) .
-
高斯混合模型(Gaussianmixturemodels,GMM)是一种重要的机器学习方法,其目的是建立目标数据集的概率模型。
Gaussian mixture model ( Gaussian Mixture Models , GMM ) is an important method of machine learning , which aims to establish a probability model for the target data set .
-
在算法方面,高斯混合模型(GMM)是目前最成功的一种说话人识别模型。
In algorithm ways , Gaussian mixture model ( GMM ) is the most successful speaker recognition model at present .
-
通过高斯混合模型拟合图像直方图,使用EM算法估计高斯参数,进而将图像分割成区域。
This paper will use Gaussian Mixed Model to fit image histogram and EM algorithm to estimate Gaussian parameters , thus to segment an image into some regions .
-
基于高斯混合模型的NSCT变换遥感图像融合
Gaussian Mixed Model Based NSCT Remote Sensing Image Fusion
-
说话人识别中有许多先进有效的识别技术,其中高斯混合模型(GMM)由于性能较好、复杂度小、方法简单,是目前最好的说话人识别算法之一。
GMM is one of the best pattern recognition techniques because of its good performance , simpleness and lower degree of complexity .
-
为了避免直接在多维空间中应用曲线演化模型,采用高斯混合模型(Gaussianmixturemodel,简称GMM)来描述该特征图像的概率分布,再从分布模型中计算得到每个像素点的区域信息和边界信息。
To avoid deforming contours directly in a vector-valued space , a Gaussian mixture model ( GMM ) is used to describe the statistical distribution of the space and get the boundary and region probabilities .
-
采用高斯混合模型(GMM)来逼近源信号的概率密度函数,简化了算法中的积分,导出了一种实用的期望最大算法(EM)算法迭代式。
Gaussian Mixture Model ( GMM ) is used to approximate the pdf of sources and results in a practical Expectation Maximum ( EM ) algorithm .
-
采用的方法分别是矢量量化(VQ)识别方法、隐马尔可夫模型(HMM)识别方法、高斯混合模型(GMM)识别方法。
They are Vector Quantization ( VQ ), Hidden Markov Models ( HMM ) and Gaussian Mixture Models ( GMM ) speaker identification respectively .
-
通过分析GMM(高斯混合模型)的说话人辨认系统的性能,提出了一种捕捉不同说话人交互信息的人工神经网络(ANN)方法,构成一个GMM/ANN混合说话人辨认系统。
An inter-speaker information ANN method is proposed , analyzing GMM model speaker identification system performance , and a hybrid GMM / ANN speaker identification system is structured .