知识发现
- 网络Knowledge Discovery;data mining;KDD;knowledge discovery in database kdd
-
目前,在CRM中使用的知识发现系统很多。
Now , there are many KDD systems applied in CRM .
-
在基于Rough集理论的知识发现过程中,减小属性约简复杂度问题是重要研究内容之一。
Reduction is one of the important issues of the KDD based on the rough set theory .
-
基于本体的Web使用知识发现模型及应用
Web Usage Knowledge Discovery Model and Its Applications Based on Ontology
-
基于语义Web的常用软件领域知识发现系统研究
Research on COMMON-SOFTWARE domain knowledge discovery system based Semantic Web
-
路径聚类:在Web站点中的知识发现
Path clustering : discovering the knowledge in the web site
-
基于Web的半结构化数据的知识发现
Knowledge Discovery of the Semi-structured Data of Web-based Resource
-
Web挖掘就是近来逐步兴起的针对Web上异质、非结构化信息进行知识发现的研究领域。
Web mining is just the recently emerging research field to solve this problem .
-
基于RoughSet理论的商务决策支持系统知识发现的研究
Knowledge Discovery in Business Decision Support System Based on Rough Set Theory
-
基于RoughSet的油液故障诊断系统的知识发现
Knowledge Discovery for Oil Diagnosis System Based on Rough Set
-
Internet上的知识发现、采掘与获取
Knowledge Discovering , Mining and Acquiring in Internet
-
基于Agent的知识发现模型的设计
The Model of Knowledge Discovery Based on Agent Technology
-
XML、元数据与生物数据知识发现
XML , metadata and knowledge discovery in biomedical data
-
基于Rough集的知识发现及其在汉语处理中的应用
Knowledge Discovery Based on Rough Sets and Applications to Chinese Processing
-
Rough集理论及其在GIS属性分析和知识发现中的应用
Rough Set Theory and Its Application in Attribute Analysis and Knowledge Discovery in GIS
-
抽象的Web挖掘模型可以提取出语义Web中隐藏在大量信息背后的近似概念,来实现知识发现。
The abstract Web mining model can extract approximate concepts hidden in a large amount of information on the semantic Web for knowledge discovery .
-
数据挖掘(DATAMINING),也称数据库的知识发现(KnowledgeDiscoveryindatabase)是指从大量的原始数据中挖掘出隐含的、有用的、尚未发现的知识和信息。
Data Mining ( Knowledge Discovery in Database ) means that the knowledge and information is discovered from the dataset , which is connotative , useful and undiscovered .
-
基于Hilbert空间理论的图像知识发现
Knowledge Discovery of Image Based on Hilbert Space Theory
-
将基于CBR的知识发现算法模型应用于实际人力资源数据分析。
Puts the model into use of the data analysis of human resource .
-
基于CBR的知识发现方法研究
Research of KDD Method Based on CBR
-
面向复杂系统的知识发现过程模型KD(D&K)及其应用
KD ( D & K ): A New Knowledge Discovery Process Model for Complex Systems
-
提出了基于知识发现和决策规则基础的盐碱地GIS和遥感分类的方法。
This paper presents the classification of saline soil method , based on knowledge discovery and decision supporting rule base systems using remotely sensed data and GIS .
-
随着数据库、数据仓库以及Internet技术的应用发展,使得数据挖掘(DATAMINING)和知识发现(KnowledgeDiscovery)引起了大量学者与专家的关注,越来越显示出其强大的生命力。
With the development of Database , data warehouse and Internet technique , data mining and knowledge discovery have attracted much attention of many researchers and experts , and they have developed rapidly .
-
分层逐步求精的知识发现KDD模型结构及其应用
Multi-Level and Incremental Structure of Knowledge Discovery in Database and Its Application
-
以同网格结合的神经网络、误差反向传播的BP神经网络、自适应多级自组织特征映像网络为主的分类、聚类技术解决科学数据挖掘中的大规模知识发现问题。
Classify and clustering techniques of ANN combination with data grid , Back-Propagation neural network , Self-Growing Multilevel Self-Organizing Map for large scale knowledge founding in SDM .
-
综述了离群数据(outliers)探测是数据挖掘和知识发现的一项重要任务及其在天文学中兴起的必然性。
The outlier detection is an important task of data mining and knowledge discovery in database .
-
数据挖掘和知识发现(KDD)就是在这一背景下产生。
Data Mining and Knowledge Discovery ( KDD ) is generated in this context .
-
军事装备维修保障IDSS中知识发现的应用分析
Knowledge Discovery in Database Applied and Analyze to Military Equipment Maintenance and Supporting IDSS
-
数据库中知识发现(KnowledgeDiscoveryindatabase,KDD)结合了数据库技术、人工智能技术以及其它专业领域知识,成为近年来计算机学科研究的热点。
The Knowledge Discovery in Database combined with database technique , the artificial intelligence and other professional domain knowledges , is becoming a hotspot in computer science in recent years .
-
基于CLS的决策型工艺知识发现算法
CLS-based Arithmetic for the Knowledge Discovery of Decision Process
-
针对网络CAPP环境下的多信息模式管理的需要,提出一种基于用户偏好的多通道用户整合算法的知识发现模式。
To meet the requirements of management CAPP multi-pattern under the environment of computer networks , a multimodal user integration pattern is proposed for user preference .