非线性码

  • 网络Nonlinear Code
非线性码非线性码
  1. q元非线性码广义Hamming重量的一些结果

    Some Results of Generalized Hamming Weights for q-ary Non-linear Codes

  2. 某些非线性码的检错性能与VG限之关系

    On the Relationship Between Error Detection Performance of Some Nonlinear Block Codes and VG Bound

  3. 然后推出了非线性码的BergerBe′ery上界。

    Then the Berger-Be ′ ery ′ s upper bound on the trellis complexity for nonlinear codes is also derived .

  4. 指出传统的RS码很难在误插入控制中充分发挥码的能力,因此建议了一类略为修正的首尾非零非线性码。

    It shows that , the traditional RS codes can not support misinsertion control to their full capacity . A slightly modified nonlinear codes as Head and Tail Non-Zero Codes ( HTNZC ) are proposed .

  5. 根据q元非线性码的广义Hamming重量,构造定义了两个关系式,通过分析,得到q元非线性码的广义Hamming重量的几个不等关系。

    Based on generalized Hamming weights for q-ary nonlinear codes , two relations are defined , and by analysis , some unequal relations of generalized Hamming weights in q-ary nonlinear codes are obtained .

  6. 本文将线性码的广义Hamming重量的概念推广到非线性码上去,并导出了一种广义Elias界.对于线性等重码,本文给出了其完整的重量谱系。

    This paper generalizes the definition of generalized Hamming weights for linear codes to nonlinear codes , derives a generalized Elias bound , and gives the weight hierarchy of linear constant weight codes .

  7. 根据非线性码的广义Hamming重量的定义,讨论了非线性等重码的广义Hamming重量的一些性质,同时给出了第2,第3广义Hamming重量的表达式。

    In this paper , in accordance with the definition of generalized Hamming Weights for nonlinear constant weight codes , some properties of nonlinear constant weight codes are discussed and the expressions of the 2nd , 3rd , generalized Hamming weights are given .

  8. 给出了非线性码的维数/长度轮廓的定义,并利用这一定义,将Forney所给出的线性码格子复杂度的新下界推广到了非线性码上去。

    Dimension / length profiles for nonlinear codes are first defined , and using the definition the definition the lower bound on the trellis complexity of linear codes gotten by Forney is generalized to nonlinear codes .

  9. 但仍存在参数更优的非线性码。

    However , non-additive codes with better parameters are also found .

  10. 神经网络与非线性码最小加权距离译码算法

    Neural Network and Minimum Weighted Distance Decoding to Nonlinear Codes

  11. 由这种网络得到了SEC-DED非线性码。

    By using the neural networks , a SEC-DED code is found .

  12. 一种可用于非线性码译码神经网络模型研究

    A neural network for decoding of nonlinear codes

  13. 关于非线性码的格子复杂度

    On the trellis complexity of nonlinear codes

  14. 通过数值计算比较了没有辅助光和辅助光以正向和逆向传播时输出探测光波形的非线性码型效应。

    The NLP of the output probe waveforms in the schemes of without assist light injection , with assist light co-propagating and with assist light counter-propagating is estimated and compared , respectively .

  15. 四元线性码是经典的纠错码理论在近十年间发展起采的一个重要研究方向,它与二元非线性码的构造及研究有着紧密的联系。

    The theory of quaternary linear codes is one of the important subjects in recent ten years , which is closely related with the study on constructions and properties of binary nonlinear codes .

  16. 神经网络与非线性分组码软判决译码

    Neural Networks and Soft-Decision Decoding to Nonlinear Block Error-Correcting Code

  17. 非线性等距码和等距等重码的上界

    Upper Bounds for q-ary Nonlinear Equidistant Codes and Equidistant Codes with Constant Weight

  18. 探究循环码的周期分布,可以给出更好的非线性循环码,构造纠错能力更强的重码和置换码等,具有实际应用价值。

    By investigating the period distributions of codes , one can obtain better non-linear cyclic codes , as well as weight codes and permutation codes with stronger error-correction capabilities .

  19. q元非线性等重码的不可检错误概率

    On the Probability of Undetected Error for q-ary Nonlinear Constant Weight Codes

  20. q元非线性2-重量码(n,2,ω1,ω2)的检错性能

    Q-ary 2-weights ( n , 2 ,ω _1 ,ω _2 ) Codes for Error Detection

  21. 本文分别研究了扩展缩短CRC码和非线性扩展缩短码。

    Extended shortened CRC codes and nonlinear extended shortened codes are studied in the paper .

  22. 非线性等重码的广义Hamming重量

    Generalized Hamming Weights for Nonlinear Constant Weight Codes

  23. (2m,2,m)非线性等重码不是最佳检错码

    ( 2m , 2 , m ) Nonlinear Constant Weight Codes are not the Optimum Error-Detecting Codes

  24. 本文证明了当m>4时(2m,2,m)非线性等重码不是最佳检错码。

    It is proved that ( 2m , 2 , m ) nonlinear constant weight codes with m > 4 are not the optimum error-detecting codes .

  25. 二元(n,2δ,w)非线性等重码在数字通信中被广泛地用作检错码,人们一直研究一般(n,2δ,w)等重码成为检错好码的充要条件。

    Binary nonlinear codes ( n , 2 δ, w ) are widely used as error detecting codes in digital communication and as good error-detecting codes , the sufficient and necessary condition of ( n , 2 δ, w ) codes has been studied by many people .

  26. 在只检错时,证明了纠正两个错误扩展BCH码是最佳检错码;m大于4的非线性等重码(2m,2,m)不是最佳码。

    It is proven that the extended double-error-correcting BCH codes are proper for pure error-detection , and the ( 2m . 2 . m ) nonlinear constant weight code for m4 are not .

  27. 非线性等重码的组合结构和构造

    The combinatorial construction and the construction for nonlinear equal weight code

  28. 二元非线性2-重量码的检错性能

    Binary 2 - weights codes for error detection

  29. 非线性等重码是一类非常重要的检错码,它的检错性能得到了普遍关注。

    The binary nonlinear constant codes are a class of important codes for error detecting .

  30. 本文进一步构造了非线性扩展缩短码,研究了多种构造非线性码的方法,提出四种构造非线性扩展缩短码的方法并理论分析和仿真比较这四种非线性码。

    After a study of many kinds of methods to generate nonlinear extended shortened codes , four kinds of nonlinear extended shortened codes are generated . Also the four kinds of methods are analyzed and simulated .