费马定理

  • 网络Fermat;fermat theorem;fermat's theorem
费马定理费马定理
  1. 依据费马定理快速寻找大素数的蒙特卡罗算法

    A Monte Carlo algorithm for fast finding large prime numbers based on fermat 's theorem

  2. 费马大定理证明的历史评述

    Historical review on the proof of fermat 's great theorem

  3. 费马大定理一个奇妙的证明

    A Marvelous Proof for Fermat 's Last Theorem

  4. 费马大定理(费马最后定理)的证明是20世纪数学的一个主要功绩。

    The proof of Fermat 's Last Theorem was a major mathematical feat ofthe20th century .

  5. 文中就费马大定理证明的艰难历程作一历史性的评述。

    The paper will review historically the difficult course of the proof of Fermat 's Great Theorem .

  6. 结果为几十年后证明费马大定理,奠定了基础。

    It turned out to be absolutely instrumental many decades later in proving Fermat 's Last Theorem .

  7. 探讨整值多项式及其恒因子,并给出费马小定理的一种证明方法。

    This paper investigates the integral valued polynomial and its identity factors , also gives a new proof for Fermat 's little theorem .

  8. 然后才是真正的精神折磨,它像毫无意义的私人费马大定理一样不断纠缠我:为什么养孩子过程中要花这么多时间做吃的?

    Then comes the real intellectual heavy lifting , revisited like a private , pointless Fermat 's Theorem : Why is food such a big part of rearing children ?

  9. 1928年,纳什出生在美国西佛吉尼亚州。他很早就表现出出色的数学天赋,高中还未毕业就已经独立证明了费马小定理。

    Born in West Virginia in 1928 , Nash displayed an acuity for mathematics early in life , independently proving Fermat 's little theorem before graduating from high school .

  10. 本文概述费马大定理从提出到解决的350余年间历代众多世界一流数学家艰苦攻关的历史和从中得到的教益

    Abstract This paper is an outline of the 350-year history that many best mathematicians in the world have been studying assiduously for the Great Theorem of Fermat to obtain solution and the enlightenment in mathematics

  11. 比如费马大定理,说任意立方数都不能表示为两个立方数的和,任意四次幂也不能表示为两个四次幂的和,等等。

    There was Fermat 's so-called Last Theorem , which conjectured that there was no cube which could be expressed as the sum of two cubes , no fourth power as sum of two fourth powers , and so on .

  12. 连续二整数不是同一奇素数P之费马解的定理

    The theorem of Fermat solution , two consecutive integers not a same odd prime number p

  13. 由上原理出发,可分别得出最小作用量原理,哈密顿原理、费马原理、H定理和最小熵产生原理。

    From the generalized principle , we can derive Least-Action Principle , Hamiltion Principle , H Theorem , Least Entropy-produced Principle and so on .