费马定理
- 网络Fermat;fermat theorem;fermat's theorem
-
依据费马定理快速寻找大素数的蒙特卡罗算法
A Monte Carlo algorithm for fast finding large prime numbers based on fermat 's theorem
-
费马大定理证明的历史评述
Historical review on the proof of fermat 's great theorem
-
费马大定理一个奇妙的证明
A Marvelous Proof for Fermat 's Last Theorem
-
费马大定理(费马最后定理)的证明是20世纪数学的一个主要功绩。
The proof of Fermat 's Last Theorem was a major mathematical feat ofthe20th century .
-
文中就费马大定理证明的艰难历程作一历史性的评述。
The paper will review historically the difficult course of the proof of Fermat 's Great Theorem .
-
结果为几十年后证明费马大定理,奠定了基础。
It turned out to be absolutely instrumental many decades later in proving Fermat 's Last Theorem .
-
探讨整值多项式及其恒因子,并给出费马小定理的一种证明方法。
This paper investigates the integral valued polynomial and its identity factors , also gives a new proof for Fermat 's little theorem .
-
然后才是真正的精神折磨,它像毫无意义的私人费马大定理一样不断纠缠我:为什么养孩子过程中要花这么多时间做吃的?
Then comes the real intellectual heavy lifting , revisited like a private , pointless Fermat 's Theorem : Why is food such a big part of rearing children ?
-
1928年,纳什出生在美国西佛吉尼亚州。他很早就表现出出色的数学天赋,高中还未毕业就已经独立证明了费马小定理。
Born in West Virginia in 1928 , Nash displayed an acuity for mathematics early in life , independently proving Fermat 's little theorem before graduating from high school .
-
本文概述费马大定理从提出到解决的350余年间历代众多世界一流数学家艰苦攻关的历史和从中得到的教益
Abstract This paper is an outline of the 350-year history that many best mathematicians in the world have been studying assiduously for the Great Theorem of Fermat to obtain solution and the enlightenment in mathematics
-
比如费马大定理,说任意立方数都不能表示为两个立方数的和,任意四次幂也不能表示为两个四次幂的和,等等。
There was Fermat 's so-called Last Theorem , which conjectured that there was no cube which could be expressed as the sum of two cubes , no fourth power as sum of two fourth powers , and so on .
-
连续二整数不是同一奇素数P之费马解的定理
The theorem of Fermat solution , two consecutive integers not a same odd prime number p
-
由上原理出发,可分别得出最小作用量原理,哈密顿原理、费马原理、H定理和最小熵产生原理。
From the generalized principle , we can derive Least-Action Principle , Hamiltion Principle , H Theorem , Least Entropy-produced Principle and so on .