负定矩阵

fù dìng jǔ zhèn
  • negative definite matrix
负定矩阵负定矩阵
负定矩阵[fù dìng jǔ zhèn]
  1. 然后给出了相应的H∞控制存在的一个新的充分条件,其条件用一个负定矩阵的形式给出,不但简洁而且包含了子系统之间的相互作用。

    Then a new sufficient condition in the form of a negative definite matrix which guarantees the existence of the state feedback H ∞ control for the T S fuzzy systems is proposed . The conditions not only are simple but also consider the interactions among the subsystems .

  2. 非负定矩阵的一个必要充分条件

    A Necessary and Sufficient Condition of Non - negative Definite Matrix

  3. 在本文中,给出A&B是非负定矩阵的一个必要充分条件(在实对称矩阵A和B是非负定的情况下)。

    In this paper , A necessary and sufficient condition that ( A-B ) be non-negative definite matrix is given ( Under real symmetric matrices A and B are non-negative definite )

  4. 讨论了D对称非负定矩阵反问题解和算法,给出了D对称非负定矩阵反问题有解条件的判别以及求解的MATLAB程序。

    Solution and algorithm of inverse problem for D-symmetric nonnegative definite matrices are discussed . The thesis also proposes the criteria for the conditions of D-symmetric nonnegative definite matrix and the MATLAB Program , a solution to these problems .

  5. 关于求解实对称非负定矩阵之g-逆的一个算法

    An algorithm on G-inverses of symmetrical Nonnegative Definite Matrices

  6. 当A为非负定矩阵且其最大特征根有限,随机变量存在有限的四阶矩情形下,获得了二次型的强收敛。

    When A is a nonnegative definite matrix with finite maximum eigenvalue , the strong convergence of random quadratic forms is established under finite fourth moment .

  7. 讨论了一类双对称非负定矩阵反问题,得到了有解的充要条件及解的具体表达式;

    The inverse problem of a class of bisymmetric nonnegative matrices is discussed , the sufficient and necessary conditions of the solvability and the expression of the general solution are obtained .

  8. 建立了D对称非负定矩阵反问题可解的充分必要条件,并给出了解的一般表达式,而且就相关的最佳逼近问题给出了惟一解的表达式。

    Some necessary and sufficient conditions have been established for the solvability of the inverse problem of the D-symmetric nonnegative definite matrix , and a general expression of the solutions is proposed . Moreover , the expression of the optimal approximate solution has been obtained .

  9. 利用LQ最优控制逆问题的参数化解,将求解对称、非负定加权矩阵Q的问题变为一类F-范数优化问题,给出了一种求解离散时间系数LQ最优控制加权矩阵Q的数值解法。

    The numerical algorithms are given to solve the weighting matrix Q of discrete time systems by transforming the problem of determing a symmetric , nonnegative weighting matrix to a F norm optimization problem .