代数余子式
- 网络cofactor;algebraic cofactor;algebraic complement minor;algebraic complement
-
用代数余子式推广cramer法则
Generalization of the Cramer Rule with the Algebraic Cofactor
-
N阶行列式扩展的代数余子式的展开
On expansion of n - order determinant
-
网络函数通常用节点方程求出,一般为节点导纳行列式丨Yn丨的代数余子式的线性组合与丨Yn丨之比。
The network functions are usually obtained by the node equations . It is generally a ratio of two determinants , the denominator one is the determinant of the node admittance matrix Y_n , and the numerator one is the linear combination of the cofactors of | Y_n | .
-
第二步,我们要找另一个矩阵,叫代数余子式。
Step two : we go to another matrix that 's called cofactors .
-
这种方法避免了求解非线性方程,不必进行行列式的展开和代数余子式的计算,而且不需要写出行列式和代数余子式,克服了传统纯数值计算的不足。
The method avoids solving nonlinear equations , overcomes the shortcomings of traditional numeric calculation .
-
本文的另一个结果是获得了求节点导纳矩阵任意一个二阶代数余子式的拓扑公式。
Another result is presented a topological formula for any 2-order algebraic cofactor in passive network node admittance matrixes .
-
代数余子式之和的性质及应用计算方阵特征向量余子式展开法
The Features and Application of the Sum of the Cofactor of a Determinant Calculation of the Eigenvector of a Square Matrix by the Expanding Cofactor
-
给出有关代数余子式之和的几个性质并予以证明,且给出利用代数余子式之和计算行列式的方法。
This paper elaborates several features of the sum of the cofactor of a determinant and provides the method to calculate the determinant of a Matrix by the sum of the cofactor of a determinant .