计算复杂性理论
- 网络Computational Complexity Theory;Computational complexity;complexity theory
-
本文在继承前人工作的基础上,将最基本也是最重要的图灵机模型及其依据于此的计算复杂性理论的若干重要概念与思想引入到EDA中的高层次综合和逻辑综合环节中。
By inheriting from works done by others , we introduce Turing machine model , which is of most importance to the computational complexity theory , high level synthesis and logic synthesis .
-
Big-Onotation:计算复杂性理论使用大0符号描述输入数据大小如何影响计算资源对算法的使用。
Big-O notation : Computational complexity theory uses big-O notation to describe how input-data size affects an algorithm 's use of computational resources .
-
矩形件排样优化问题实际上是一个十分困难的问题,从数学计算复杂性理论看,它属于具有最高计算复杂性的一类问题:NP完全问题。
Optimal layout of rectangle pieces belongs to NP-complete problem , so it is usually impossible to find its optimal solution .
-
计算复杂性理论表明,被称作NP完全问题的旅行推销员问题以及其它类似的组合优化问题在计算上是等价的。
The complexity theory of calculation has proved that the so-called problem of NP and other similar problems are equal in calculating .
-
20世纪70年代至今的计算复杂性理论表明,对于NP难度问题可能根本就不存在多项式时间复杂度的求解算法,于是人们使用各种启发式算法求此类问题的近似解。
Investigations from the 1970s to now , show that for NP hard problems , there possibly does not exist an algorithm is of Polynomial time complexity .
-
以算法的收敛性理论和计算复杂性理论为基础,逐一分析SUMT算法以及遗传算法的收敛性,并比较三种算法的优劣性。
Base on algorithm 's convergence theory and calculation 's complexity theory to analyze seriatim SUMT algorithm 's convergence and genetic algorithm 's convergence , and compare performance with each other .
-
但是由于资源约束和工艺约束的并存,迄今计算复杂性理论表明,多数调度问题属于NP-hard(NondeterministicPolynomial&Hard,非确定性多项式)难问题,目标解的搜索涉及解空间的组合爆炸。
But because the resource and procedure restriction , to now the theory of calculate complexity show most schedule problem is belong to nondeterministic polynomial hard problem , and the research of the results involve space ' combination explode .
-
采用计算复杂性理论对模型的计算难度进行了分析。
The calculation difficulty of the model is analyzed by calculation complexity theory .
-
这篇论文的主题就是用计算复杂性理论的方法对量子零知识交互证明展开研究。
The theme of this thesis is to carry out a complexity-theoretic study of zero-knowledge quantum interactive proof .
-
这个结果对于数论和计算复杂性理论的研究与发展具有重要意义。
The result has important significance to research and development in both number theory and computational complexity theory .
-
自动机理论是算法描述和分析,计算复杂性理论,可计算性等研究的基础,它为计算理论提供了可靠的数学模型。
Automata theory is the basic of research of algorithm description and analysis , the theory of computation complexity , and computability , etc.
-
受计算复杂性理论的影响,很多学者曾在很长一段时间内,希望通过证明单纯形法具有多项式时间算法。
Affected by the computational complexity theory , scholars have had a lot of time to hope that simplex method has a polynomial time algorithm .
-
算法机制设计的一个主要研究方向是在机制设计中引入计算复杂性理论,对于机制的复杂性进行研究分析,判断相应机制的复杂度。
One major research direction of algorithmic mechanism design is that we can bring the computational complexity theory into mechanism design to determine the complexity of the corresponding mechanisms .
-
由于现代密码学正是建立在整数分解理论和计算复杂性理论的基础之上,因此素性测试问题对现代密码学的影响引起了人们的关注。
Because modern cryptography is based on the theory of integer factoring and the computational complexity theory , the effect of this algorithm to modern cryptography has been paid significant attention .
-
在基于角色的访问控制管理模型中,采用安全查询来描述系统安全策略,引入状态变换系统定义基于角色的访问控制管理模型及其安全分析,用图灵机理论和计算复杂性理论进行安全分析。
Systemic security strategy is described by security query in administrative model of role-based access control ( RBAC ) . According to the definition of state-transition system , security analysis is defined and executed on Turing machine .
-
下面的表格指出了在可计算性和复杂性理论应当考虑的一些种类的问题。
The following table shows some of the classes of problems that are considered in computability theory and complexity theory .
-
计算时间复杂性是演化理论中的一个重大课题。
The computational time complexity is an important topic in the theory of evolutionary algorithms .
-
这包括可计算性理论,计算复杂性理论,信息理论。
This includes computability theory , computational complexity theory , and information theory .
-
计算方法基于计算复杂性和概率理论,可以建立密码学可靠的证明。
Computational method is based on computational complexity and probability theory ; it can create a reliable proof of cryptography .
-
高级课程中还包括了可计算包括理论模型理论和计算复杂性理论。
For curricula automata subject a more advanced graduate course , computability theory and computational complexity theory are also covered .