板条马氏体

  • 网络lath martensite;lath martensite; dislocation martensite
板条马氏体板条马氏体
  1. 试验结果表明:在该钢Ac3以上~200℃超高温淬火可获得组织细小均匀的板条马氏体加残余奥氏体。

    The experiment results show that the adoption of ultrahigh temperature quenching at ~ 200 ℃ above Ac_3 can obtain a thin and uniform lath martensite of microstructure plus residual austenite .

  2. 锻造温度在线A3以上时,试样呈现板条马氏体组织,随着变形温度的升高,板条马氏体组织晶粒变大,均匀度减小。

    When the forging temperature reach line A3 , sample showed the lath martensite , with temperature increase , the lath martensite grain grows , uniformity decreases .

  3. 研究发现,碳钢马氏体的硬度由板条马氏体和片状马氏体的硬度决定,在0.3%~1.0%C范围内存在一个由板条马氏体和片状马氏体混合而造成的附加硬度ΔHB;

    And there is secondary hardness △ HB which is consisted of martensite lath and martensite plate when they are mixed in the range of 0.3 % - 1.0 % C.

  4. Nb和稀土氧化物可以细化组织,从而提高堆焊金属的硬度,硬面合金的组织主要包括板条马氏体,残余奥氏体和点状碳化物。

    Nb and RE oxide could refine the microstructure , thus the hardness of hardfacing alloy could also be improved . The hardfacing alloys microstructure in this research were composed of lath martensite , residual austenite and dotted carbides .

  5. Fe-C-N合金板条马氏体的组织构成

    The Structural Constitution of Lath Martensite in Fe-C-N Alloys

  6. 发现淬火该钢经560和630℃多次回火后马氏体内孪晶清晰完整,板条马氏体中仍然存在着以魏氏组织形态分布的M3C型碳化物。

    It is found that twins are clear and complete in the martensite after tempering many tinges at 560 and 630 ℃, in plates martensite M_3C carbides still remain with the morpho distribution of widmannstatten structure .

  7. 结果表明在980~1120℃加热正火后,T91钢均得到板条马氏体组织,但马氏体板条束的大小显著不同。

    It established that the lath martensite is obtained through normalizing under the different austenitizing temperature within 980 to 1120 ℃, but the size of martensite lath is obviously different .

  8. 研究了005%C012%Nb钢板1200℃固溶,10%冰盐水处理-15%冷轧变形600~680℃时效时Nb对钢中板条马氏体再结晶行为的影响。

    The effect of Nb on lath martensite recrystallization behavior in 0.05 % C-0.12 % Nb steel plate solid solution treated at 1 200 ℃, 10 % ice salt-water cooling - 15 % cold rolling deformed and 600 ~ 680 ℃ aged has been studied .

  9. 金相研究表明,添加A1的WC-13%Fe/Co/Ni合金中的粘结相主要是γ相和板条马氏体,局部有α+(F,Me)_3C的片层状组织存在。

    The metallographic studies have indicated that the bonding phase of the WC-13 % Fe / Co / Ni alloy with addition of small A1 is mainly of γ phase and lath martensite with partial existense of α + ( Fe , Me ) _3C lamellar structure .

  10. 结果表明,9Ni钢焊接热影响区的组织主要为板条马氏体,并可能存在少量的残余奥氏体。

    Results showed that 9 % Ni steel HAZ is mainly constructed of martensite , with very little retained austenite at low cooling rate .

  11. 结果表明,组织中具有高密度位错的板条马氏体及与基体共格的细小沉淀相M2C是该钢具有高强度的主要原因。

    The results showed that the lath martensite with high density of dislocation and the formation of fine particles M_2C dispersive and distributed coherent with the matrix were responsible to the high strength of the steel .

  12. 低碳板条马氏体组织对高强度螺栓性能的改善

    Performance improvement of high strength bolts by low-carbon martensitic lath struc-ture

  13. 板条马氏体的宏观点阵变形特征及其相变晶体学研究

    Macroscopic Lattice Deformation Characteristic and its Crystallographic Analysis of Lath Martensite Transformation

  14. 这些微区分别为内孪晶马氏体区和位错板条马氏体区。

    They are dislocated lath martensite area and twinned martensite area respectively .

  15. 一定范围内升高奥氏体化温度有利于提高淬透性,促进微细板条马氏体的形成。

    ( ii ) Increasing austenitizing temperature promoted martensite formation .

  16. 枝晶内为孪晶马氏体和部分板条马氏体。

    The prodominant twin martensite and partial lath martensite existed in dendrite .

  17. 微观结构对板条马氏体启裂和裂纹稳态扩展的影响

    The Effect of Microstructure on Crack Initiation and Steady State Propagation of Lath Martensite

  18. 板条马氏体大变形轧制工艺的晶粒细化机制

    Grain-Refining Mechanism of Severe Rolling to Lath Martensite

  19. 大变形轧制细化、破碎板条马氏体,并进一步增加了组织中的位错密度;

    Thinning and damage of martensite laths and increase of dislocation density in laths during severe rolling ;

  20. 在此基础上,对板条马氏体/贝氏体(M/B)混合组织的强韧化微观机理进行了深入的探讨。

    On this basis , strengthening and toughening mechanism of martensite / bainite mixed structure was in-depth study .

  21. 研究了超高强度板条马氏体钢的平面应变断裂韧性与缺口韧性、拉伸塑性之间的关系。

    The relationship between fracture toughness and notch toughness , tensile ductilities in lath martensite steel has been investigated .

  22. 分析了采用板条马氏体大变形轧制工艺制备超细晶钢板时的显微组织演变过程及其晶粒细化机制。

    The microstructure evolution and grain-refining mechanism of the process , severe rolling of lath martensite , was studied .

  23. 时效处理后,马氏体时效不锈钢的微观组织为纤细的板条马氏体+少量的残余奥氏体。

    The microscope structure of maraging stainless steel is fine martensite structure and small quanlity residual austenite after aging treatment .

  24. 这种短小的回火板条马氏体相对具有较低的疲劳缺口敏感性并可使屈服强度和伸长率同时提高。

    This structure is of lower sensitivity to notch fatigue and makes the yield strength as well as elongation increase .

  25. 钢的淬火组织为位错型板条马氏体和分布其间的薄膜状残余奥氏体;

    The fine structure of martensite is of dislocation type with stable retained austenite films observed at the lathe boundries ;

  26. 利用干涉显微镜首次测得了板条马氏体形状应变的大小及方向。

    The magnitude and direction of lath martensitic shape strain is firstly measured by a new interference method in this research .

  27. 原始组织以针状铁素体为主,空冷组织以多边形铁素体和少量粒状贝氏体组成,水淬组织以板条马氏体为主。

    The original microstructure is acicular ferrite , air cooling microstructure is polygonal ferrite and water quenching microstructure is lath martensite-based .

  28. 结果表明,奥氏体化温度越高,获得板条马氏体的量越多,奥氏体化温度超过某个临界值时,中高碳钢均可获得全部板条马氏体组织。

    The results are as follows : the higher the austenitizing temperature , the more the amount of lath martensite is .

  29. 随着冷却速度的减慢,其组织为板条马氏体、板条马氏体加粒状贝氏体和粒状贝氏体三种形态。

    As cooling rate is decreased the structure is lath martensite , lath martensite and grain bainite , and grain bainite alternatively .

  30. 以板条马氏体为原始组织,慢速加热可使粒状贝氏体继承原组织特征。

    When plate martensite is taken as original structure , the slow heating can make gram bainite inherit structure feature of original structure .