有效电荷

  • 网络effective charge;effective nuclear charge
有效电荷有效电荷
  1. 由离子间相互作用势并结合BrandtKitagawa有效电荷模型,我们可以自洽地确定出团簇中组成离子的电荷态。

    The individual ion 's charge distribution is derived by using Brandt-Kitagawa effective charge model in conjunction with the spacial potential .

  2. 在简单的Spitzer电阻率模型下,欧姆驱动的环向电流密度剖面,主要由每一时刻的电子温度剖面和有效电荷数Zeff的剖面决定。

    For a simplified Spitzer resistivity model , the toroidal current profile is determined by the electron temperature profile and the effective charge number Z_ ( eff ) profile at each time .

  3. 由ST模型参数1/αi和kii分别计算得到蛋白质的有效电荷数基本一致。

    The effective protein charge values calculated respectively from ST model parameters 1 / α iand k ii are consistent . 2 .

  4. 借助于线性Vlasov方程,我们研究了重离子束在等离子体靶中的有效电荷数和电子阻止本领。

    Using the linear Vlasov equation , we have investigated the effective charges of ion beams and electron stopping ability in plasma targets .

  5. 根据LO-TO劈裂的实验结果,计算出该晶体的静态介电系数和各极化模的有效电荷。

    Based upon the experimental results of LO-TO splitting , the effective charges of polar modes and the static dielectric constants are calculated .

  6. 为了考虑入射离子的束缚电荷分布,我们将Brandt-Kitagawa的有效电荷理论推广到热靶。

    For considering the charge distribution of the electrons bound to the projectile , the theoretical model of Brandt-Kitagawa is generali-zed to the situation of hot target .

  7. 同时,电荷注入过程基本发生在初始阶段,且有效电荷注入速度在初始的10ns范围内约为6×1012cm-2μs-1。实验表明这种结构的纳米晶存储器将会有很大的应用前景。

    Meanwhile , the basic process of the charge injection occurs in the initial stage , and the effective charge injection rate is about 6 × 1012 cm-2 μ s-1 in the case of 10-8 s , indicating a great potential for this memory structure .

  8. 观察到的电子温度约500eV,平均电子密度2.8×10~(13)cm~(-3),能量约束时间10ms,有效电荷数小于3,最低稳定运行安全因子2.5,最长放电持续时间1040ms。

    The electron temperature was approximately 500 eV , average electron density was about 2.8 × 1013 cm-3 , energy confinement time reached 10 ms , effective charge number was less than 3.The lowest stable operating safety factor was nearly 2.5 and the longest pulse length lasted 1040 ms.

  9. 高温超导氧化物中铜有效电荷的计算及讨论

    Calculation and Discussion of Copper Effective Valence in High Temperature Superconducting Oxides

  10. 所以任何一个说有效电荷量为。

    So any of the answers that said a z effective of .

  11. 重离子束在热靶中的电子阻止本领与有效电荷数

    Electronic stopping power and effective charge of heavy ion-beam in hot targets

  12. 几何参数、纵向场、有效电荷对自举电流也有着不同程度的影响。

    Geometric parameter , longitudinal field , effective charge also have influence in different level .

  13. 它们受到少的屏蔽,因为它们离原子核更近,它们感觉到一个更大的有效电荷量。

    They 're less shielded because they 're closer to the nucleus , they feel a greater z effective .

  14. 太阳宇宙线的有效电荷及计算可以看出等离子表面处理聚乙烯可以有效抑制空间电荷的产生。

    CALCULATION OF EFFECTIVE CHARGES OF SOLAR ENERGETIC PARTICLES The mechanism of surface modification of polyethylene by plasma was discussed .

  15. 在低速和高速情况下,分别得到了有效电荷数和电子阻止本领的解析表示式。

    In the case of low and high velocities , the analytical expres-sions of the electronic stopping power and the effective charge are obtained , respectively .

  16. 考虑颗粒表面电场和量子振荡的耦合作用之后,必须引入有效电荷系数对离子的化合价进行修正。

    After taking into account of the coupling of surface electric field and quantum flocculation , the effective charge number coefficient is introduced into the system .

  17. 本文报告了70.1MeV~(+6)O核在国产核-4乳胶中的径迹宽度,讨论了径迹宽度与低能重离子在核乳胶中的射程、速度以及有效电荷的依赖关系。

    Track widths of 70 . 1MeV ~ ( + 6 ) O ion in N-4 nuclear emulsion made in China is reported in this paper .

  18. 数值结果表明,对于低速离子,有效电荷数随电子气的温度增加而增加;

    For low-velocity ion , it has been shown that the values of the effective charge are increased as the values of the electron gas temperature are increased .

  19. 87是可能的,实际上它们是不可能的因为即使,我们看到了一个完全的屏蔽,最小的有效电荷是。

    87 are possible , they actually aren 't possible because even if we saw a total shielding , 1 the minimum z effective we would see is1 .

  20. 材料的结构无序等效为有序格子中原子电偶极矩和有效电荷的无序。

    The struc ■ tural disorder of the material is described equivalently by introducing an ordered lattice with disorders in the electric dipoles and effective charges of the atoms .

  21. 所以你们为什么不开始,而且识别碳的正确的在你们做作业方面,电子构型,我会告诉你有效电荷量是。

    So why don 't you go ahead and identify the correct electron configuration for carbon , 6 and I 'll tell you that z is equal to6 here .

  22. 其过程为:首先采用中心原子团簇模型,用密度泛函理论的离散变分方法确定特征原子的有效电荷;

    Firstly , the effective charge of characteristic atom was evaluated through the approach on the base of density function theory ( DVM-X_ α) according to the central atom cluster model .

  23. 我们应该可以计算出任何一个,我们想要谈论的原子的有效电荷量,只要我们知道电离能是多少。

    So we should be able to calculate a z effective for any atom that we want to talk about , as long as we know what that ionization energy is .

  24. 所以当我们再一次检查这些时,我们想看到的是,有效电荷量处于两种极端案例中,这两种极端案例。

    So again , when we check these , what we want to see is that our z effective falls in between the two extreme cases that we could envision for shielding .

  25. 在此基础上,研究了NO退火对SiO2/SiC界面特性的影响。结果表明,NO退火进一步降低了界面态密度、边界陷阱密度和氧化层有效电荷,增强了界面可靠性。

    Moreover , post-oxidation NO anneal , especially in a wet ambient , can further decreases the interface-state density , border trap density and effective oxide-charge density , and enhance the interface reliability .

  26. 结果表明,O2+TCE氧化不仅提高了氧化速率,而且降低了界面态密度和氧化层有效电荷密度,提高了器件可靠性。

    It is demonstrated that the O_2 + TCE oxidation can not only increase oxidation rate , but also decrease interface-state density and effective oxide-charge density , and enhance reliabilities of SiC MOS devices .

  27. 在前期工作的基础上,当初通道使用具有有效电荷库仑波时,完成了电子入射离化氦原子三重微分截面的理论推导。

    Based on our earlier paper , the triple differential cross section for electron impact ionization atomic helium are calculated by use of Coulomb waves with an effective charge for the initial channel wave function .

  28. 当入射电子处在有效电荷库仑场的情形下,我们计算了电子入射离化氦原子的三重微分截面,并发现现有的理论计算与实验结果很好的一致。

    We compute the triple differential cross section for electron impact ionization atomic helium using Coulomb waves with an effective charge for the incoming electron and find very agreement with experiment and with previous calculations .

  29. 我们来做这个考虑,举例来说,如果我们写出,有效电荷量为8的氧的电子构型。

    So let 's do this considering , for example , what it would look like if we were to write out the electron configuration for oxygen where z is going to be equal to8 .

  30. 但重要的不是,最可能半径,当我们谈论它感到的有效电荷量的时候,更重要的是,电子实际上。

    But what 's important is not where that most probable radius is when we 're talking about the z effective it feels , what 's more important is how close the electron actually can get the nucleus .