多项式定理

  • 网络Polynomial theorem;Suslin mohic polyllomialthoorem
多项式定理多项式定理
  1. 有关最小多项式定理及其应用

    Theorem and Application of the Least Polynomial

  2. 先用组合方法阐述,然后从多项式定理利用代数方法推导。

    First interpret it combinatorially , and then derive it algebraically from the multinomial theorem .

  3. 改进的一微分多项式定理

    Improved One Theorem of Differential Polynomials

  4. HS多项式映射定理

    HS Mapping Theorem of Polynomials

  5. 有关一个整系数多项式环定理的矩阵证明

    A Matrix Proof of a Theorem about a Polynomial Ring with Entire Coefficient

  6. 多项式恒等定理的一个初等证明&兼谈多项式恒等式定理在矩阵代数中的应用

    A elementary proof of identical polynomial theorem and it 's applications in matrix algebra

  7. 多项式恒等定理的应用

    The Applicance of Polynomial Identity Theorem

  8. 分子轨道图形理论中对称轴定理的明确和扩展&(Ⅰ)本征多项式分解定理

    A Definiteness and an Expansion of the Theorems of a Symmetry Axis in Graph Theory of Molecular Orbitals (ⅰ) The Factorization Theorems of Eigen Polynomial

  9. 本文给出几个判断整系数不可约多项式的定理,比文[1]给出的定理更具有一般性。

    This paper offers several theorems on judging irreducible polynomial of integral coefficient , which has more generality than those given out in the article ( 1 ) .

  10. 给出矩阵A的最小多项式的定理,并举例说明了关于矩阵最小多项式的定理在解决某些问题时的有效性。

    In this paper , theorem about the Least Polynomial of matrix A is given , and validity about the Least Polynomial theorem in solving certain questions is explained with examples .

  11. 基于多项式保守定理,利用复变函数方法和保角变换,本文给出了一套完整的解析解的分析方法,获得了若干夹杂和界面上应力分布的封闭形式的解析解。

    A complete procedure for seeking for analytical solution for such orthotropic inhomogeneity problem is given and some closed-form solutions for the induced stress field are derived based on the polynomial conservation theorem , the complex function method and conformal transformation .

  12. 本文提出了新的二维离散赫维茨(Hurwitz)多项式的检验定理。

    The test theorem of 2-D discrete Hurwitz polynomials is proposed .

  13. 应用勒让德多项式的加法定理和类似于求傅里叶系数的方法,导出了新展式中系数的普遍表达式。

    The method , which we use to derive the general expressions for the new coefficients in the development of gravity anomaly Ag ( m , a ), is analogous to Fourier 's.

  14. 本文根据回转体所应满足的基本边界条件,利用多项式的余数定理,导出了回转体横截面面积分布曲线的基本表达式。

    By means of the remainder theorem of polynomial , a so-called " basic mathematical expression " of the transverse cross sectional area curve of bodies of revolution is derived from the boundary conditions which have to be satisfied .

  15. Ba空间中三角多项式逼近的Jackson定理

    The Jackson theorem in b_a spaces approximated by trigonometric polynomials

  16. 应用K-泛函和乘子方法建立了球面Jackson多项式逼近的正定理、逆定理和饱和定理。

    Using methods of K-functional and multiplier the direct , inverse and saturation theorems are established .

  17. 关于多项式系数的Jensen定理及其Abel模拟

    Jensen 's theorem on multinomial coefficients and its abel-analog

  18. 多项式插值与Rolle定理

    Polynomial Interpolation and Rolle 's Theorem

  19. 应用零点定理,斯图姆定理和单变元多项式正定性判定定理,讨论了不等式φ(x)>ψ(x)在两种不同的情况下的判定算法。

    Using Zero theorem , Sturm theorem and determinative theorem of the positive of univariate polynomials , we put forward the determinative algorithm to auto-reason the inequality φ( x ) > ψ( x ) under the two different conditions .

  20. 关于用分段多项式逼近的逆定理的注记

    A Note on the Inverse Theorem for Approximation by Piecewise Polynomials

  21. 特征多项式的降阶定理及应用

    Reduced Order Theory Of Characteristic Polynomial And Some Application

  22. 一类微分多项式的唯一性定理

    Unicity Theorem of a Kind of Differential Polynomial

  23. 三角多项式算子的饱和定理

    The saturation theorem of trigonometric polynomial operators

  24. 研究特征多项式的降阶定理以及它在高阶矩阵方面的应用。

    This paper introduces the reduced order theory of characteristic polynomial and its application in the higher order matrix aspects are presented .

  25. 依据管克英、雷锦志在IntegrabilityofSecondOrderAutonomousSystem一文中给出的二阶多项式自治系统可积的充要条件,通过复域上二元多项式函数整除定理,判定了Brusselator方程不存在代数曲线解。

    By means of the sufficient and necessary condition of the second order polynomial system 's integrability and the division theorem of polynomial functions in two variables in the complex domain , we obtain some criterion for the non_existence of Brusselator equation algebraic curve solution .