同伦论
- 网络homotopy theory
-
Eilenberg-MacLane空间是代数拓扑中阻碍理论的核心,是同伦论的重要构成部分。
Eilenberg-MacLane space plays an essential role in Obstruction theory in Algebraic topology . And it is an important part of Homotopy theory .
-
上同调算子也是同伦论的一部分重要内容,可以用来计算空间的同伦群,并且与相应的Eilenberg-MacLane空间的上同调群存在双射。
Cohomology operation belongs to Homotopy theory and can be used to calculate the homotopy group of topological space . Further more it has a bijection relationship with the cohomology group of the corresponding Eilenberg-MacLane space .
-
态范畴的同伦论问题研究
Study of the Problems of Homotopy Theory in Category of Morphisms
-
同伦论的一个应用&拟人双臂动态协调装配的数学模型
An Application of Homotopy & The Mathematical Model of Dynamic Cooperative Assembling
-
销-孔动态协调装配的数学模型&同伦论的应用
The mathematical model of dynamic coordinative assembling of " peg-hole " & an application of homotopy
-
本文利用有序介质缺陷的同伦论系统地研究超流He系统的拓扑结构。
The topological structure of the superfluid He system has been studied using the homotopy theory for defects in ordered media developed in the 80s .
-
同伦论的重要内容就是计算空间的同伦群,目前计算同伦群的最重要方法是谱序列。
The most important content in Homotopy theory is to calculate the homotopy group of a topological space . Now the most useful method to calculate homotopy group is spectral sequence .
-
并且简单介绍了拓扑学中同伦论的历史和思想,为后面提出新的解析方法进行理论上的铺垫。本文从拓扑学角度,对管状磁畴壁和闭合磁畴壁静态结构的分类问题,做了统一处理。
Finally , a simple introduce of homotopy is employed . The classification of the static magnetic domain wall structures of tube - and envelope-type is made in an unified way using the homotopy theory .