命题公式

  • 网络proposition formula
命题公式命题公式
  1. 关于模态命题公式4、E和B的布尔值

    On the Boolean Value of the Modal Formulae 4 、 E and B

  2. 命题公式集F(S)在Godel系统中的一个24类分划

    A 24-class partition of propositional formula set F ( S ) in Godel system

  3. 真度,并研究了区间值模糊命题公式的真度值在[0,1]中的分布。

    Truth degree and discussed the distribution in [ 0,1 ] .

  4. 命题公式主范式的自动生成与形式输出

    Automatic Generation and Formal Output of Special Normal Forms of Propositional Formulae

  5. 它既可以判定一个命题公式是重言式、矛盾式或协调式,也可以判定命题推理是否有效。

    It can judge if a proposition is valid .

  6. 关于命题公式的主范式

    On The Principal Norm Forms of Proposition Formulae

  7. 基于二元域研究命题公式

    Discuss Prepositional Formula Based on Binary Field

  8. 命题公式真值表的生成与公式类型的机械判定

    Generating Algorithm of Truth Value Table and Type 's Mechanical Decision to a Propositional Formula

  9. 命题公式的二叉树

    The binary tree of the propositional fomula

  10. 极小项和极大项是主范式问题的核心,体现了命题公式的成真赋值和成假赋值以及公式类型等诸多特征。

    The minimum term and maximum term defined by the propositional variations , are the core problems of expressions and applications stemmed from the propositional formula .

  11. 讨论了命题公式的主析取范式、主合取范式中的极小项与极大项下标集合的性质,利用主范式的下标集合得到了命题公式蕴涵的几个充要条件。

    With respect to the principal disjunctive normal form and the principal conjunctive normal form , we also approach the properties of the subscript sets derived from the minimum term and maximum term .

  12. 事实上,我们知道,算法的时间复杂性是根据问题实例的大小计算所得。而对于涉及命题公式的一类问题,问题实例的大小不仅依赖于变量的数量,还依赖于子句的数量。

    In fact , as we know , the time complexity is calculated based on the size of the instances , which depends not only on the number of variables , but also on the number of clauses .

  13. 取赋值格为[0,1],引入赋值密度函数,定义了命题公式的概率真度,并讨论几种赋值密度函数的形态,得到一些概率真度推理规则。

    Taking the valuation lattice to be the unit interval , this paper introduces the valuation density function and defines the probability truth degree . In addition it discusses some forms of valuation density and gains some rules to guide the probability truth degree inference .

  14. 在鉴定汇票签名属主事人或代理人手笔时,应采取对票据效力最有利之方法予以推定。它既可以判定一个命题公式是重言式、盾式或协调式,也可以判定命题推理是否有效。

    " In determining whether a signature on a bill is that of the principal or that of the agent by whose hand it is written , the construction most favorable to the validity of the instrument shall be adopted . " It can judge if a proposition is valid .

  15. 许多形式化验证问题最终都归结于布尔可满足问题(SAT),它用来判断命题逻辑公式是否为可满足的。

    Many of these formal methods can be translated to Boolean / Propositional Satisfiability Problems ( SAT ), which is used to decide whether a formula according to propositional logic is satisfied .

  16. QBF是一种具有量词前缀的命题逻辑公式,该公式中的变量都是由存在量词或者全称量词限制。

    QBF Formulae is propositional logic formulae with existential or universal quantifiers to every variable in prefix .

  17. 基于标准化表示的命题逻辑公式的D-随机真度

    D-Stochastic Truth Degree of Formulas Based on Standardized Representation in Propositional Logic

  18. 探讨二值命题逻辑公式及逻辑等价公式统一性问题。

    The uniform issue of two-valued propositional logic formulas and logical equivalent formulas is discussed .

  19. 在分析了框架元模型组成元素的基础上,应用面向领域的特征模型的方法,对构件模型组织结构进行统一的抽象和描述,并用命题逻辑公式来表示构件之间的逻辑关系和语义约束;

    Firstly , this paper abstracts and describes the component modeling structure by analyzing the composition of framework meta-model and applying the method of domain-oriented features model , and describes the logic relation and semantic constraint between components by applying the symbolic logic formula .

  20. ヒukasiewicz三值命题逻辑中公式的可靠真度理论

    Theory of Reliable Truth Degree in ヒ ukasiewicz 3-valued Logic System

  21. 经典命题逻辑中公式的Γ-随机真度与近似推理

    The Γ - rand Truth Degree of Fomulas and Approximate Reasoning in Classical Propositional Logic

  22. 最后通过给定的命题逻辑规则公式来验证构件模型的合理性、框架扩展的正确性。

    Finally , the given symbolic logic formula can prove the rationality of component model and validity of framework extension .

  23. n值命题逻辑系统中公式真度的进一步研究

    The Further Study of Formula 's Truth Degree under n-value Proposition Logic System

  24. 连续值命题逻辑系统中公式的概率真度

    Probability Truth Degree for Formula in the Continuous Value Propositions Logic System

  25. (k,s)-SAT是命题满足性问题限制在一类特殊的命题公式上,该命题公式具有每个子句只有k个不同的文字且每个变元出现的次数少于s次的特点。

    ( k , s ) - SAT is the propositional satisfiable problem restricted to instances where each clause has exactly k distinct literals and every variable occurs at most s times .

  26. 命题逻辑中的推理规则可以用来证明一个已经表示成命题公式的定理,但它还不便于机械化实施。

    Propositional logic in the inference rule can be used to prove that a propositional formula has been expressed as the theorem , but it is not easy to implement mechanization .