量子电动力学

liànɡ zǐ diàn dònɡ lì xué
  • quantum electrodynamics
量子电动力学量子电动力学
  1. 腔量子电动力学(CavityQuantumElectrodynamics,简称CavityQED)是研究光子与原子相互作用的一种有力工具。

    Cavity quantum electrodynamics ( C-QED ) is an experimental system to study the quantum behavior of interaction between atoms and photons .

  2. 以量子电动力学的基本理论为依据,从最一般的四光子过程入手,给出了相干反StokesRaman效应的量子解积。

    The general four-photon processes and coherent anti-Stokes Raman effect based on the basic principle for the quantum electrodynamics are discussed in some detail .

  3. 量子电动力学(QED)效应用有效核电荷方法计算;

    The contributions of quantum - electrodynamics are evaluated by using effective nuclear charge .

  4. 本文提出了一个在量子电动力学(QED)腔场中传送未知的两原子纠缠态的方案。

    We present a scheme to teleport an unknown atomic entangled state in driven cavity QED .

  5. 基于腔量子电动力学(腔QED)的量子隐形传态方案。

    Implementing teleportation in cavity QED .

  6. 结果与量子电动力学(QED)的预言一致。

    Our numerical results are in agreement with the Quantum Electrodynamics ( QED ) prediction with in the error .

  7. 腔量子电动力学(腔QED)是一种可以实现量子纠缠的物理体系,它具有非常好的前景。

    Cavity quantum electrodynamics ( cavity QED ) is one of physical system which can realize the quantum entanglement .

  8. 含Chern-Simons项的(2+1)维标量量子电动力学

    Scalar quantum electrodynamics with Chern-Simons term in ( 2 + 1 ) dimensions

  9. 以有效核电荷方法计算量子电动力学(QED)效应和高阶相对论效应的贡献。

    Quantum electrodynamics ( QED ) effect and the contribution of higher order relativistic effects are calculated by effective nuclear charge theory .

  10. 此外还讨论了:(1)切割泡泡图与S矩阵幺正性结合,给出量子电动力学(QED)红外发散对消方法的自然理解。

    ( 1 ) Combining the unitarity of S matrix with cutting-bubble diagrams , One can understand naturally the cancellation among infra-red divergence .

  11. 本文主要内容包括以下几个方面:1.研究了腔量子电动力学(QED)背景中原子有限时间解纠缠发生的条件。

    The main results of this thesis are as follows . 1 . We studied the conditions of atomic finite-time disentanglement in cavity QED .

  12. 量子电动力学(QED)可以允许宇称破坏的费米子质量项,并由此引进一个新参量。

    The Fermion mass with a parity violating part in quantum electrodynamics ( QED ) is allowed in principle and hence introduces a new parameter .

  13. 应用腔量子电动力学和量子阱物理,计算了量子阱DBR微腔激光器的自发发射谱。

    Based on cavity quantum electrodynamics and physics of quantum well , the spontaneous emission spectra in quantum well micro cavity lasers with DBRs have been calculated .

  14. 腔量子电动力学(QED)体系是制备多原子纠缠态的重要的工具,在量子信息过程中扮演重要角色。

    Cavity quantum electrodynamics ( CQED ), as one of the most conventional system in preparing entangled atoms , plays an important role in quantum information processing .

  15. MARK-J实验组关于量子电动力学的检验

    Test of QED by MARK - J Collaboration

  16. 采用腔量子电动力学(QED)方法,定量讨论了平面结构微腔半导体激光器的自发发射特征物理量随腔结构的变化规律。

    The cavity quantum electrodynamics ( QED ) method is adopted to discuss quantitatively the variation of spontaneous emission characteristic quantities versus the cavity structures in planar microcavity semiconductor lasers .

  17. 为了得到高精度的计算结果,通过引入有效核电荷的方法估算了高阶相对论和量子电动力学(QED)效应对能量和精细结构的贡献。

    To get highly accurate results , the higher order relativistic and quantum electrodynamics ( QED ) contributions to the energy and fine structure splitting are considered by introducing effective nucleus charges .

  18. 首先,第一章中我们简单回顾有关量子电动力学的基本概念、狄拉克理论、Schwin-ger效应和WKB近似法等理论及其应用。

    In the first chapter , we briefly reviewed the basic concepts of quantum electrodynamics , the Dirac theory , the Schwinger effect and the WKB approximation method and its application .

  19. 建立了铯原子双磁光阱(MOT)系统用来制备腔量子电动力学(Cavity-QED)实验所需的处于超高真空(UHV)环境中的冷原子。

    A cesium double magneto-optical trap ( MOT ) system is established to prepare the cold atoms in the ultra-high-vacuum ( UHV ) chamber for cavity quantum electrodynamics ( Cavity-QED ) experiment .

  20. 腔量子电动力学(CavityQuantumElectrodynamics)是实现量子信息的重要方法之一,也是目前在实验上获得决定性多粒子纠缠(Deterministicmulti-particleentanglement)的物理系统。

    Cavity quantum electrodynamics is an important mesas to realize quantum information , and it is also the system that obtain Deterministic multi-particle entanglement . Using Cavity quantum electrodynamics system can achieve the conversion between atomic quantum bit and photon quantum bit .

  21. 第二章主要讨论通过腔量子电动力学(QED)制备纠缠态:首先研究远程制备光子-光子纠缠态,然后提出了使用纠缠交换产生和浓缩多原子纠缠态的方案。

    In chapter ⅱ, we study on the ways of preparing quantum-entangled states in cavity QED , including practical scheme for remote state preparation of a photon-photon entangled state , and generation and concentration of multi-atom entangled states .

  22. 本文在求解塑性力学问题中,采用了量子电动力学中著名的Dirac矩阵和Pauli矩阵,使求解塑性应力增量的问题变得十分简单。

    We are primarily concerned in this paper with the problem of plasticity . The solution of the problem of stress-increment for plasticity can be put into extremely compact form by famous Dirac matrices and Pauli matrices of quantum electrodynamics .

  23. 腔量子电动力学(Cavity-QED)描述特定腔场下物质与电磁场之间的相互作用,为量子信息的发展提供了一个全新的发展平台。

    Cavity quantum electrodynamics ( cavity QED ) describes the coherent interaction between matter and an electromagnetic field confined in a resonator structure . It provides a useful platform for quantum information processing .

  24. 用于腔量子电动力学研究的铯原子双磁光阱

    Cesium Double Magneto - Optical Trap for Cavity - Quantum Electrodynamics

  25. 微腔与腔量子电动力学研究进展

    Progress in the study on microcavities and cavity quantum electrodynamics

  26. 完整地讨论这个问题需要应用量子电动力学。

    To treat the problem fully requires the use of quantum electrodynamics .

  27. 在四元数空间中,从度规方程出发,也可导出量子电动力学中的γ矩阵;

    γ- matriees in quantum electrodynamics are derived from the metric equation .

  28. “用两分钟时间解释一下量子电动力学,现在开始。”

    " Explain quantum electrodynamics in two minutes , starting now . "

  29. 柱环腔中的量子电动力学效应

    Effects of quantum electromagnetic dynamics in a cylindrical ring cavity

  30. 玻璃微球荧光的腔量子电动力学增强效应

    Study of Glass Microsphere Spectra Modified by Cavity QED Effect