行满
-
利用Sylvester方程具有行满秩或列满秩解的判定准则研究广义Loewner矩阵、Hankel矩阵和广义Cauchy矩阵的行(列)满秩性。
Using the criteria on a full row or column rank solutions of Sylvester equation , the authors discuss the full row or column rank properties of generalized Loewner matrice 、 Hankel matrice and generalized Cauchy matrice .
-
算法首先对观察信号进行预处理,把多余的观察信号剔除,使预处理后的混叠矩阵A是行满秩的;
Observed signals are pre-processed through eliminating redundancy signals so that mixed matrix A is row full rank .
-
行(列)满秩矩阵的几个性质
Some properties of row ( coiumn ) full rank matrix
-
本文建立了行(列)满秩矩阵和齐次矩阵方程有行(列)满秩解的充要条件,并讨论了矩阵分解及其在齐次线性方程组的应用
In this paper , the sufficient and necessary conditions of row ( column ) full rank matrix and the row ( column ) full rank solution to homogeneous matrix equation are obtained . It also discusses the matrix decomposition and its application in the theory of homogeneous linear equations