行满

行满行满
  1. 利用Sylvester方程具有行满秩或列满秩解的判定准则研究广义Loewner矩阵、Hankel矩阵和广义Cauchy矩阵的行(列)满秩性。

    Using the criteria on a full row or column rank solutions of Sylvester equation , the authors discuss the full row or column rank properties of generalized Loewner matrice 、 Hankel matrice and generalized Cauchy matrice .

  2. 算法首先对观察信号进行预处理,把多余的观察信号剔除,使预处理后的混叠矩阵A是行满秩的;

    Observed signals are pre-processed through eliminating redundancy signals so that mixed matrix A is row full rank .

  3. 行(列)满秩矩阵的几个性质

    Some properties of row ( coiumn ) full rank matrix

  4. 本文建立了行(列)满秩矩阵和齐次矩阵方程有行(列)满秩解的充要条件,并讨论了矩阵分解及其在齐次线性方程组的应用

    In this paper , the sufficient and necessary conditions of row ( column ) full rank matrix and the row ( column ) full rank solution to homogeneous matrix equation are obtained . It also discusses the matrix decomposition and its application in the theory of homogeneous linear equations