核心种质

  • 网络core collection;core germplasm
核心种质核心种质
  1. 利用结构分析软件STRUCTURE划分栽培大豆微型核心种质的遗传结构,结果将所有材料划分为7组。

    Soybean mini core collection was divided into 7 groups by software STRUCTURE .

  2. 多态位点百分率(p)可以作为判断核心种质取样规模的判定参数。

    Percentage of polymorphic loci ( p ) could act as a determination parameter for the size of core collection .

  3. 研究表明,极差符合率(CR)可以作为评价核心种质代表性的首选参数。

    The coincidence rate of range ( CR ) was the optimal evaluating parameter .

  4. 云南稻种核心种质高Zn含量分布区、Zn含量的多样性均与云南稻种的多样性中心密切相关,但Cu,Mn含量及其多样性分布区与云南稻种资源多样性中心关系不大。

    Cu and Mn contents were not related to the diversity center of Yunnan rice landrace .

  5. 中国茶树核心种质的初步构建及其RAPD分析

    Preliminary Establishment of Core Collection and RAPD Analysis of Camellia Sinensis in China

  6. 部分烟草核心种质RAPD分析

    Analysis on RAPD markers of partial core germ plasms

  7. 中国小麦微核心种质资源PPO基因的等位变异

    Allelic Variation of PPO Genes in Chinese Wheat Micro-Core Collections

  8. 基于SSR标记构建西南玉米地方品种核心种质的方法

    Methods of constructing a core collection of maize landraces in southwest China based on SSR data

  9. 其次,利用RAPD技术对初选的核心种质进行了遗传多样性评价鉴定。

    Secondly , the genetic diversity of the pre-core collection of Camellia Sinensis was detected by RAPD analysis .

  10. 所获得的各供试稻属AA组种质DNA多态性数据可进一步应用于稻属遗传多样性保护,核心种质构建以及新品种选育等研究。

    DNA polymorphism data of all the tested AA-genome germplasm would benefit the genetic resources conversation , core collection construction and genetic improvement of rice .

  11. 335份旱稻核心种质构建与栽培稻抗旱相关QTL定位

    Developing a Core Collection of 335 Upland Rice and Mapping QTL Associated with Drought Tolerance in Rice

  12. SSR标记RM190等位基因条带数与云南稻核心种质无效磷活化能力密切相关。

    Ability of activating ineffective phosphorus of Yunnan rice landrace is nearly correlated with the allelic number of SSR-RM190 .

  13. 计算不同取样比例的初级核心种质和总体种质性状的符合率,并用F检验来检测不同取样比例构建初级核心种质的效果。

    The coincidence rate of traits between primary core collection and total collection was calculated and the efficiency of constructed primary core collection was analyzed by F-test .

  14. 均值差异百分率(MD)可作为判断核心种质是否具有代表性的判定参数。

    Mean difference percentage ( MD ) was a determination parameter for the reliability judgement of core collection .

  15. 红麻核心种质资源遗传多样性及其亲源关系SRAP标记分析

    SRAP Analysis of Genetic Diversity of Core Kenaf Germplasm

  16. 利用AFLP数据建立核心种质再生植株的AFLP分析表明,由激素诱导的再生植株中,AFLP谱带发生了变化,表明发生了体细胞无性系分子水平变异。

    Developing Core Collection Based on AFLP Data AFLP data also showed that the variation occurred at the DNA level .

  17. 中国小麦微核心种质低分子量麦谷蛋白Glu-A3位点等位基因的PCR检测

    Screening Glu-A3 Alleles of LMW-GS Genes from Mini-core Collections of Chinese Wheat Varieties Using Alleles-specific PCR Markers

  18. 变异系数变化率(VR)可以作为评价核心种质变异程度的重要参考参数。

    The variable rate of coefficient of variation ( VR ) could act as an important referential parameter for evaluating the variation degree of core collection .

  19. 863份云南稻种初级核心种质糙米P平均含量是土壤总磷的7.17倍,土壤总钾含量是糙米K平均含量的7.56倍。

    Average P contents in brown rice of 863 accessions of core collection in Yunnan rice are 7.17 times than that of the total phosphorus in soil , and total potassium content of soil are 7.56 times of average K contents in brown rice .

  20. 分析不同SSR等位变异保留比例的遗传多样性指数发现,当保留90%和80%的SSR等位变异时,核心种质具有更高的遗传多样性。

    When SSR allelic reserving ratios were maintained at 90 % and 80 % , the core collections had higher genetic diversity indices of SSR alleles than if maintained at 70 % .

  21. 综合分析结果表明,黄芩核心种质构建最佳方法为最小距离逐步取样法(LDSS)。

    Comprehensive comparison showed that of least distance stepwise sampling ( LDSS ) is the .

  22. 初步认为,云南地方稻种资源核心种质代表了云南省地方稻种资源的遗传多样性;从DNA水平上看,云南地方稻种资源遗传多样性中心在云南省的西南部,粳稻的分化水平低于籼稻。

    So the conclusion was primarily that the landrace rice core collection in Yunnan genetically represented the whole landrace rice resources in Yunnan , the center of genetic diversity at DNA level lay in Southeast of Yunnan , and the DNA differentiation between indica and japonica was small .

  23. 平均Simpson指数(MD)、平均Shannon-Weaver多样性指数(MI)和平均多态信息含量(MPIC)是评价核心种质代表性的重要参数。

    Mean Simpson index ( MD ), mean Shannon-Weaver index of genetic diversity ( MI ) and mean polymorphism information content ( MPIC ) were important evaluating parameters .

  24. 利用大豆核心种质随机抽样发掘28K和30K过敏蛋白缺失优异种质

    Identification of Gly m BD 28K and Gly m BD 30K lacking soybean by using random sampling of core collection in Soybean

  25. ICRISAT花生微核心种质中抗黄曲霉侵染和产毒种质的频率显著高于中国花生核心种质。

    The ratio of peanut genotypes resistant to Aspergillus flavus invasion and aflatoxin production of ICRISAT mini core were higher than those of Chinese peanut core collection respectively .

  26. 小麦微核心种质的Viviparous-B1基因多态性及其籽粒休眠性的检测和鉴定

    Detecting and Identifying Polymorphism of Viviparous-B1 Gene and Its Seed Dormancy in Mini-core Collection of Chinese Wheat Varieties

  27. 研究了不同数目和多态性的SSR位点所估算群体的遗传结构,以及利用不同数目和多态性的SSR位点所构建核心种质的遗传结构和遗传多样性。

    The main contents and results were as follow : It firstly studied the genetic structure of a rice population estimated by different number of loci with different polymorphisms , and genetic diversity and genetic structure in core collections sampled according to different number of loci with different polymorphisms .

  28. 而ISSR技术,是一种鉴定山药种质实用、有效的工具,能为山药育种亲本的选择、利用以及核心种质的构建,提供分子水平的依据和技术支持。

    The ISSR molecular marker is one of practical and effective method to identified the germplasm of yam , its can provides the proof and technical support at molecular level for the choosing and using of parents and construction of core collection of yam breeding .

  29. 云南稻种核心种质表型性状、糙米矿质元素含量与其SSR标记有一定相关,首次以SSR标记为基础揭示了糙米矿质元素的含量易受环境的影响,而籽粒的性状主要受遗传基因的控制。

    There are some relation between SSR markers and phenotypic traits as well as 8 mineral elements in brown rice of rice landrace in Yunnan Province , which first revealed that mineral elements in brown rice was liable to environmental affect , and grain traits major be controled for genes .

  30. 采用Nagamine等(1991)法研究了598份云南稻核心种质在稻作区划间、地州间苗期耐冷性强弱、变异程度及其地理生态差异。

    S : Eco-geographic difference , grade and variation of cold tolerance at seeding stage 598 accessions core collection from prefectures and rice regions zone in Yunnan rice were identified using Nagamine et al ( 1991 ) under 5 ° C low temperature condition .