函数论

  • 网络Function Theory;theory of functions
函数论函数论
  1. 多复变数函数论的几个问题(七)&一点注记

    Some Problems of the Theory of Functions of Several Complex Variables (ⅶ) & A Remark

  2. 1957年从法国归来的熊庆来先生负责建立了函数论研究组。

    In1957 , Professor Xiong Qinglai , who returned from France , founded the research group of the theory of functions .

  3. 超复函数论的非线性Hilbert边值问题

    Nonlinear Hilbert Boundary Value Problems in hypercomplex function theory

  4. Riemann曲面上的几种函数论零集

    On Function-Theoretic Null - Sets On a Riemann Surface

  5. 需特别强调的是,与几何函数论相关的一项令人兴奋的新进展是Schramm-LoewnerEvolution(SLE)的产生。

    In particular , an exciting new development associated with Geometric Function Theory is the Schramm-Loewner Evolution ( SLE ) .

  6. 多元调和函数论中Nevanlinna类的边界性质

    Behavior Near the Boundary of Nevanlinna Class of Harmonic Functions of Several Variables

  7. 本文从复变函数论的柯西积分公式出发,导出求解任意截面TEM传输线特性阻抗的复边界元方程。

    The complex boundary element equation for the solution of the characteristic impedance of an arbitrarily shaped TEM transmission line is deduced in the paper , based on the Cauchy integral theorem for analytical complex variable functions .

  8. 这是多复变函数论中一个很重要的课题,特别是Cauchy积分与多复变奇异积分有着十分紧密的联系。

    This is an important topic in the function theory of several complex variables . Especially , there is an intimate relation between the Cauchy integrals and the singular integrals of several complex variables .

  9. Bernoulli数、Stirling数、Euler数在组合数学、函数论、理论物理及近似计算等方面均有广泛的应用。

    Bernoulli numbers , Stirling numbers and Euler numbers have a wide range of applications in many fields such as combinatorics , function theory , theoretical physics , approximate calculation , and so on .

  10. 利用复Fourier级数的卷积及广义函数论,推导出圆孔无限大板在边界弯曲时对应于常见3种孔边界条件的挠度解析公式。

    By means of the convolution of the complex Fourier Series and the generalized functions , the deflection analytical formulas are produced for the infinite plates with a unit circle under the boundary loads and the three common conditions at the unit circle edge .

  11. Hida于1975年开创,该理论本质上是一种无穷维的Schwartz广义函数论,有着深刻的物理背景,近年来得到了数学物理界的广泛关注。

    Hida in 1975 . In essence , it is an infinite dimensional Schwartz distribution theory , which has a deepgoing physical background and has been getting much attention in recent years .

  12. 其证明过程揭示,Nevanlinna理论可与函数论的一些初等分析结合而得到部分新的结果。

    Adequate proof in detail via Nevanlinna theory with some basic analytic skills in the theory of complex functions is provided . NET , it is obtained by the characteristic analysis of the preparatory service army equipment .

  13. 本文基于连续性方法和利用已建立的一个积分算子,研究了Douglis意义超复函数论的非线性Riemann边值问题的可解性,解可用逐次逼近法构造出来。

    This paper investigates solvability of nonlinear Riemann boundary value problems for hypercomplex function theory in Douglis ' sense by using of the continuation method and an integral operator , which is given by the author previously .

  14. 利用复变函数论和自相似函数的方法将所讨论的不同边界条件的问题转化为Riemann-Hilbert问题和Keldysh-Sedov混合边界值问题。

    By utilizing the methods of the theory of complex variable functions and self-similar functions , discussed problems with different boundary conditions can be transformed into Riemann-Hilbert problems and Keldysh-Sedov mixed boundary value problems .

  15. 利用路径积分方法与复变函数论中Plana求和公式,计算了(2+1)维空间中正方形边界下Maxwel-Chern-Simons场的Casimir效应。

    Based on the path-integral method and the Plana summation formula in the theory of complex variable function , the Casimir effect of Maxwell-Chern-Simons field under square boundary conditions in the ( 2 + 1 ) - dimensional space-time has been calculated .

  16. 对受冲击载荷作用,在不同正交异性材料结合面上扩展的裂纹动力学问题,利用结合面的条件及本文给出的完全解,可以化为解析函数论中的Keldysh-Sedov混合问题。

    Using conditions of interface and the complete solution , the shock problem of propagating crack in interface between different orthotropic media can be changed into the Keldysh-Sedov mixed problem of theory of analytic functions .

  17. 讨论实变函数论课程的主题情境分析问题.包括:Lebesgue测度与积分理论产生以及展开的问题线索、主要想法、主要技术处理手段、整体结构等问题。

    This article is dealing with the problem of the subject context analyzing for Real Variable Function Theory , including Lebesgue measure , integral theory , the developing clue of the problem , the main idea , the main methods of skill , the whole construction , etc .

  18. 本文介绍美国加州理工学院荣誉教授TomM.Apostol编著的《数学分析》一书,以供我国高校数学与计算机相关专业在进行函数论基础课课程和教材改革时参考。

    In this paper , we introduce the textbook 《 Mathematical Analysis 》 written by Tom M.Apostol , an honorable professor at Caltech of USA. This textbook can be used as a reference when we want to reform foundation courses of functional theory in universities of China .

  19. 本文把复变函数论中著名的Poincare-Bertrand公式拓广到闭逐块C(1)光滑流形上Bochner-Martinelli型奇异积分的含有点ζ的立体角系数α(ζ)的更一般的置换公式。

    In this paper , we expand the well-known Poincare - Bertrand formula in the complex function theory to the general replacement formula of singular integral of Bochner-Martinelli type which contains the solid angle coefficients α(ζ) of the point ζ on a closed piecewise C ( 1 ) smooth manifold .

  20. 发掘实变函数论课程中的创造性因素

    Excavate the Creative Factors in the Theory of Real Variable Functions

  21. 广义函数论在厚板弹塑性动力分析中的应用

    Application of generalized function to dynamic analysis of elasto-plastic thick plates

  22. 复变函数论典型环路积分的理论分析

    Theoretical Analysis for Typical Complex Function Integration with Closed Curvilinear

  23. 共轭解析函数论中微分中值定理的类似与推广

    Differential Theorems of Mean and Their Extension in Theory of Conjugate Analytic Functions

  24. 赋环空间是几何函数论的最新发展。

    The ringed space is a recent development of the geometric function theory .

  25. 实变函数论是现代分析必不可少的理论基础。

    Functions of real variable is an essential basic theory in modern analysis .

  26. 在初等分析中发展椭圆函数论

    The Theory of Elliptic Functions Based on Elementary Analysis

  27. 纤维维数是处理许多重要函数论问题和算子论问题的一个有效不变量。

    Fiber dimension is an effective invariant in function theory and operator theory .

  28. 实变函数论课程教学改革的探索与实践

    Some Ideas on Educational Reform in the Course of Real Variable Function Theory

  29. 对《复变函数论》书中几个问题的商榷

    Discussion of Several Problems in " Theory of Functions of a Complex Variable "

  30. 一般系统可靠性函数论

    On reliability functions of a kind of systems