代数几何学

  • 网络Algebraic Geometry
代数几何学代数几何学
  1. 自从1945年MacLane与Eilenberg提出范畴的概念和理论以来,它在数学的许多分支,例如代数几何学、拓扑学、微分几何学以及函数理论中均已有所应用。

    In 1945 MacLane and Eilenberg introduced the concept and theories of categories , which have played a role in many branches of mathematics such as algebraic geometry , topology , differential geometry and functional theories .

  2. 逐步阐明格论,概述影响整数最优化的代数几何学思想,并讨论整数最优化的几何学。

    Develops the theory of lattices , outlines ideas from algebraic geometry that have had an impact on integer optimization , and discusses the geometry of integer optimization .

  3. 当时我学习的课程有物理、代数、几何学、希腊语和拉丁文。

    I had physics , algebra , geometry , astronomy , Greek and Latin .

  4. 定理机器证明的研究已有将近50年的历史,并已经在数理逻辑、初等代数和几何学等学科取得显著成功。

    There has been a lot of success in the study of automated theorem proving during the past 50 years .

  5. 多元李代数系统在几何学、动力学系统及玄论中有着广泛的应用。

    The n-Lie algebra has its wide applications in geometries , mechanics and string theories .

  6. 特别是n-李代数的导子代数,是n-李代数在几何学及相关学科应用的重要工具。

    Especially , the derivation algebra of n-Lie algebras plays an important role in applications of n-Lie algebras .