保守力

  • 网络Conservative force;conservation force
保守力保守力
  1. 再论保守力及其功、势能的分析与计算

    A Further Discussion on the Analysis and Calculation for Conservative Force and Its Work , Potential Energy

  2. 对保守力和非保守力定义的两种表述的等价性进行了分析研究,认为其中一种表述更为准确和严密。

    Analyzing studying the equivalence of the two definitions of conservative force non - conservative force , this paper considers one of the definitions more accurate more rigorous .

  3. 非保守力对广义力学系统Lie对称性的影响

    Effects of non-conservative forces on Lie symmetries of a generalized mechanical system

  4. 有趣的结果是,如果一个力场F,是由势产生的&,也就是,我们在保守力场中遇见过的情况。

    The cool consequence of this is if a force field F derives from a potential & That is what we have seen about conservative forces .

  5. 非保守力和非完整约束对Hamilton系统Noether对称性的影响(英文)

    Effects of Non-conservative Forces and Nonholonomic Constraints on Noether Symmetries of a Hamilton System ;

  6. 对由金属和陶瓷两种材料制成的功能梯度材料(Functionallygradedmaterial,FGM)矩形板在非保守力作用下的稳定性问题用微分求积法进行研究。

    The stability of Functionally Graded Material ( FGM ) rectangular plate made of metal and ceramic under the action of non-conservative force is analyzed .

  7. 利用GFZ数据中心提供的CHAMP卫星星载加速度计数据,通过坐标系转换计算得到惯性系下的非保守力加速度;

    In terms of the accelerometer data of CHAMP ( GFZ , CHAMP-ISDC ), acceleration information of non-conservative forces under CIS is computed through coordinate system transformation .

  8. 并通过一个算例说明了以上原理的一般运用,最后讨论了本章所提的非保守力概念的丰富含义。第三,推导了刚体动力学的拟Hamilton变分原理和广义拟变分原理。

    General application of those principles is demonstrated in a typical example . The concept of non-conservative force is also discussed in the end . Thirdly , the variational principle and the general variational principle of quasi-Hamilton for dynamics of rigid bodies are deduced .

  9. 用边界元法研究非保守力系下杆的稳定性

    Research on stability of rods under nonconservative loadings by boundary element method

  10. 浅议保守力和非保守力的定义

    On Definitions of Conservative Force & Non - conservative Force

  11. 保守力与系统势能研究

    An investigation on conservative force and portential energy of system

  12. 试论保守力具势的证明

    A New Proof to the Theorem That the Conservative Force Has Potentials

  13. 用Galerkin&有限条法分析矩形板在非保守力作用下的稳定性

    Stability analysis of rectangular plate subjected to nonconservative forces using Galerkin-Finite strip method

  14. 关于一般非保守力系统解答的一个结论

    A conclusion about the solutions of general Nonconservative Systems

  15. 非保守力作用下杆的塑性动态稳定性

    Plastic Dynamic Stability of a Column under Nonconservative Forces

  16. 但是,机械能守恒,仅仅适用于保守力。

    However , the conservation of mechanical energy only holds for conservative forces .

  17. 因此,摩擦力称为非保守力或耗散力。

    The friction force is therefore called a nonconservative or a dissipative force .

  18. 什么是不可抗力微极弹性动力学中非保守力场问题的变分方法

    Variational Methods for the Problems of Nonconservative Force Fields in the Micropolar Elastodynamics

  19. 梯形板在非保守力下的稳定性分析

    The Vibration and Stability of Non Conservative Trapezoidal Plates

  20. 微分形式与经典力学中的保守力场

    Differential Form and Conservative Force Field in Classical Mechanics

  21. 理想气体分子在保守力场中按势能的分布规律

    The Characteristics of the Potential Energy Distribution of Ideal Gases in a Conservative Field

  22. 保守力与势能梯度互为对偶矢量。

    The conservative force and the gradient of the potential energy are dual vectors .

  23. 保守力判据的积分法推导

    The Inference of Conservative Forces Criterion by Integration

  24. 惯性力为保守力的物理条件

    Physical Condition of Inertia Force is Conservative Force

  25. 复合材料层合板在非保守力作用下的动力稳定性

    Dynamic stability of composite laminates under non-conservative forces

  26. 一维运动中,凡只取决于位置的力都是保守力。

    In one dimension , any force that depends only on position is conservative .

  27. 力学体系保守力的判据及势能计算

    Criterion of Conservative Force and the Calculation of Potential Energy in the System of Mechanics

  28. 具有与路径无关这样一种性质的力叫做保守力。

    Forces with the property that is independent of the path are called conservative force .

  29. 在能量守恒下的振动,在保守力场中的情况,能量图。

    Collisions using energy conservation , conditions for a force-field to be conservative , energy landscape .

  30. 如果只受保守力的作用,则动能加势能是一个恒量。

    If only conservation forces act , the kinetic energy plus the potential energy remains constant .