中值定理

  • 网络Intermediate Value Theorem;The Mean Value Theorem
中值定理中值定理
  1. n阶行列式形式的微分中值定理的再推广

    Re-extension of the Differential Mean Value Theorem of n Order Determinant Form

  2. 本文将一元函数的微分中值定理推广到了n元函数。

    This article extends the mean value theorem for differential of one-variate function to that of n-variate function .

  3. 微分中值定理的n阶导数形式

    Forms of n-th-Order Derivatives in Differential Mid-Value Theorem

  4. 微分中值定理的常数K值法

    Method to Prove a Class of Differential Mean Value Theorem

  5. Taylor中值定理证明思路的探讨

    Discussion on Train of Thought for Proving Taylor Mean Value Theorem

  6. 用数学归纳法证明带Lagrange余项的Taylor中值定理

    Proving the Taylor Formula with Remainder of Lagrange by Mathematical Induction

  7. 浅谈Lagrange中值定理及应用

    A Tentative Discussion on Lagrange Mean Value Theorem and its Application

  8. Lagrange中值定理中间点的渐进性

    Research into progressiveness of intermediate point of Lagrange mean value theorem

  9. 研究式教学法讲授Taylor中值定理

    Teaching Taylor Mean-value Theorem by Using Research-type Teaching Approach

  10. Lagrange微分中值定理的分析证明法

    Analytical Proof of the Lagrange Intermediate Value Theorem of Calculus

  11. 曲Banach空间微分中值定理及其应用

    Differential Mean Value Theorem in Curved Banach Space and Application

  12. 对广义Taylor中值定理给出了一种新的证法;

    This article provided a new proof of the generalized Taylor ′ s theorem ;

  13. Taylor中值定理是高等数学教学的一个难点。

    Taylor Mean-value Theorem is a difficult point in the teaching of advanced maths .

  14. 对Lagrange中值定理证明方法的讨论

    Some New Proofs of the Lagrange Mean Value Theorem

  15. 关于Lagrange中值定理证明的一个注记

    The Comment on Proof to Lagrange Mean Value Theorem

  16. 关于Taylor中值定理的进一步的讨论

    Further discussion of Taylor mean value theorems

  17. 利用Taylor公式可以进一步导出微积分中值定理的推广形式。

    Some generalized forms of infinitesimal intermediate value formula can be induced from Taylor Formula .

  18. 关于Taylor中值定理的注记

    Note of Taylor Mean Value Theorem

  19. Cauchy微分中值定理在多元函数中的推广

    An Extending of Cauchy 's Mean-Value Theorem on Functions of Several Variables

  20. Lagrange中值定理的逆命题

    Lagrange mean value theorem 's converse proposition

  21. Lagrange中值定理的新证法

    New Proof for Lagrange Mean Value Theorem

  22. 积分型Cauchy中值定理中间点的渐近性

    Asymptotic Properties of Intermediate Point for Cauchy Mean Value Theorem of Integral Type

  23. Cauchy微分中值定理的多种探究式证明法

    Several Exploration Methods to Prove the Cauchy Mean Theorem

  24. 积分型Cauchy中值定理的一个注记

    Note on Cauchy Mean Value Theorem of Integral Type

  25. 从Lagrange微分中值定理的证明谈数学分析教学的改革

    Discussion on the Reform of Mathematical Analysis Teaching Through the Proof of Lagrange 's Mid-Value Theorem

  26. 以微分中值定理和Taylor级数为依据得出了常微分方程初值问题数值解法的一个一般公式。

    By differential mean value theorems and Taylor series , we deduce a unified formula in this paper .

  27. 应用Lagrange中值定理证明一般热传递过程中的熵增

    Using the Theorem of Lagrange Proves the Principle of Entropy Increasing in the General Heat Passage Process

  28. 关于Lagrange中值定理Cauchy中值定理证明辅助函数的构作

    Auxiliary function creation in lagrange 's mean value theorem and cauchy 's mean value Theorm proof

  29. Cauchy中值定理的一般形式

    Generalized expression of Cauchy mean value theorem

  30. 实践证明,用研究式教学法讲授Taylor中值定理,有助于提高教学质量。

    Practice has proved that teaching Taylor Mean-value Theorem by using research-type teaching approach can help to improve teaching quality .