中值定理
- 网络Intermediate Value Theorem;The Mean Value Theorem
-
n阶行列式形式的微分中值定理的再推广
Re-extension of the Differential Mean Value Theorem of n Order Determinant Form
-
本文将一元函数的微分中值定理推广到了n元函数。
This article extends the mean value theorem for differential of one-variate function to that of n-variate function .
-
微分中值定理的n阶导数形式
Forms of n-th-Order Derivatives in Differential Mid-Value Theorem
-
微分中值定理的常数K值法
Method to Prove a Class of Differential Mean Value Theorem
-
Taylor中值定理证明思路的探讨
Discussion on Train of Thought for Proving Taylor Mean Value Theorem
-
用数学归纳法证明带Lagrange余项的Taylor中值定理
Proving the Taylor Formula with Remainder of Lagrange by Mathematical Induction
-
浅谈Lagrange中值定理及应用
A Tentative Discussion on Lagrange Mean Value Theorem and its Application
-
Lagrange中值定理中间点的渐进性
Research into progressiveness of intermediate point of Lagrange mean value theorem
-
研究式教学法讲授Taylor中值定理
Teaching Taylor Mean-value Theorem by Using Research-type Teaching Approach
-
Lagrange微分中值定理的分析证明法
Analytical Proof of the Lagrange Intermediate Value Theorem of Calculus
-
曲Banach空间微分中值定理及其应用
Differential Mean Value Theorem in Curved Banach Space and Application
-
对广义Taylor中值定理给出了一种新的证法;
This article provided a new proof of the generalized Taylor ′ s theorem ;
-
Taylor中值定理是高等数学教学的一个难点。
Taylor Mean-value Theorem is a difficult point in the teaching of advanced maths .
-
对Lagrange中值定理证明方法的讨论
Some New Proofs of the Lagrange Mean Value Theorem
-
关于Lagrange中值定理证明的一个注记
The Comment on Proof to Lagrange Mean Value Theorem
-
关于Taylor中值定理的进一步的讨论
Further discussion of Taylor mean value theorems
-
利用Taylor公式可以进一步导出微积分中值定理的推广形式。
Some generalized forms of infinitesimal intermediate value formula can be induced from Taylor Formula .
-
关于Taylor中值定理的注记
Note of Taylor Mean Value Theorem
-
Cauchy微分中值定理在多元函数中的推广
An Extending of Cauchy 's Mean-Value Theorem on Functions of Several Variables
-
Lagrange中值定理的逆命题
Lagrange mean value theorem 's converse proposition
-
Lagrange中值定理的新证法
New Proof for Lagrange Mean Value Theorem
-
积分型Cauchy中值定理中间点的渐近性
Asymptotic Properties of Intermediate Point for Cauchy Mean Value Theorem of Integral Type
-
Cauchy微分中值定理的多种探究式证明法
Several Exploration Methods to Prove the Cauchy Mean Theorem
-
积分型Cauchy中值定理的一个注记
Note on Cauchy Mean Value Theorem of Integral Type
-
从Lagrange微分中值定理的证明谈数学分析教学的改革
Discussion on the Reform of Mathematical Analysis Teaching Through the Proof of Lagrange 's Mid-Value Theorem
-
以微分中值定理和Taylor级数为依据得出了常微分方程初值问题数值解法的一个一般公式。
By differential mean value theorems and Taylor series , we deduce a unified formula in this paper .
-
应用Lagrange中值定理证明一般热传递过程中的熵增
Using the Theorem of Lagrange Proves the Principle of Entropy Increasing in the General Heat Passage Process
-
关于Lagrange中值定理Cauchy中值定理证明辅助函数的构作
Auxiliary function creation in lagrange 's mean value theorem and cauchy 's mean value Theorm proof
-
Cauchy中值定理的一般形式
Generalized expression of Cauchy mean value theorem
-
实践证明,用研究式教学法讲授Taylor中值定理,有助于提高教学质量。
Practice has proved that teaching Taylor Mean-value Theorem by using research-type teaching approach can help to improve teaching quality .