文谱

文谱文谱
  1. 文中采用谱域法对频率选择表面(frequencyselectivesurfaces)进行仿真,谱域法是与矩量法结合在一起的。

    In the paper , a spectral approach is used to simulate the Frequency Selective Surfaces ( FSS ), and it is combined with the Method of Moment .

  2. 文中用谱域分析法对十字形振子阵FSS的特性进行了分析计算,并应用于天线罩或低RCS反射面天线中。

    The FSS of cross dipoles has been analysed and calculated by the Spectral-Domain approach and applied to the antenna radome or low RCS reflector antenna .

  3. 文中采用谱分解方法建立起矩阵列元素的谱分解表,并采用直解法的递推公式,可以快速给出矩阵的分解。

    Based on the table of matrix element of spectrum decomposition , the Helmhotz matrix can be decomposed by recursion of the direct solution .

  4. 该文对双谱假彩色微光电视系统的原理进行论述,探讨了实现双谱假彩色微光电视系统的有关技术。

    This thesis puts emphasis on study on principle and technology of two colour false colour low light level TV system , pursuing the related techniques of realizing .

  5. 文中采用拟谱方法对流场进行直接数值模拟,用Lagrange模型跟踪固粒。

    The spectral method is adopted to solve the Navier-stokes equation and each particle is traced with Lagrange method .

  6. 文中从双谱概念出发引入时域双谱概念,分析了HRRP的时域双谱特征。

    By introducing the conception of time-domain bispectra the time-domain bispectra characteristics of HRRPs are analyzed .

  7. 文中还就谱线特征的形成原因作了分析。

    The origination of the spectral features are analyzed .

  8. 文中导出了谱域法求解频率选择表面的场方程,并用伽略金矩量法进行求解。

    Field equation for frequency selective surface is derived in spectral domain and solved by the Galerkin moment method .

  9. 文中应用响应谱的离散形式将模式谱的计算结果与北半球(1881&1980年)年平均温度距平序列的实际谱进行了统计检验,从而论证了随机模式模拟全球温度变化的适用性。

    The correspondence between the computed spectra by the model and the observed ones of annual mean temperature anomalies in the Northern Hemisphere from 1881 to 1980 is statistically examined .

  10. 本实验对4号高能X光转换屏在X光照射下所发荧光光谱作了分析,文中给出了谱线图,以及扫描出的强度-谱线曲线,并对实验结果作了分析

    High power x ray converter under x ray illumination . The spectral line diagram and the scanned intensity spectral line curve are given in the paper . The experimental results are analyzed . The Spectra of Hypercubes Spectra for ocean swell SOLUTION OF THE ROOT OF LINE GRAPHS