实数理论

  • real number theory
实数理论实数理论
  1. 在GO-空间中,不仅给一般拓扑学提供了精彩丰富的例证,而且架设了一般拓扑学和相关数学分支的桥梁,如格论、Domain理论、图论及实数理论等等。

    Not only does GO-space provide rich examples , but also GO-space buildes a bridge between general topology and related mathematics branches , such as Lattics theory , Domain theory , Graph theory , Real number theory , etc.

  2. Weierstrass聚点定理、Cauchy收敛准则、区间套定理、确界存在定理、单调有界定理和有限复盖定理是实数理论的六个等价命题。

    The six equivalent propositions of real number theory are Weierstrass condensation point theorem , Cauchy criterion for convergence , contract consecutive interval theorem , the existence theorem of supremum and infimum , monotone and boundedness theorem , and finite covering theorem .

  3. 实数理论是数学分析的重要基础。

    The theory of real number is the important base of Mathematic Analysis .

  4. 实数理论的问题与足够准分析简介

    The Problem of Real Number Set and the Introduction of Sufficient Accurate Analysis

  5. 实数理论再议

    A Re-discussion on the Theory of Real Numbers

  6. 这劳什子大半都是超实数理论,差不多和一具泡了三千年朝天椒酱的埃及木乃伊一样容易消化。

    This kind of stuff is heavy on the surreal number theory : about as digestible as an Egyptian mummy soaked in tabasco sauce for three thousand years .

  7. 区间套原理不仅在实数理论中是重要的,而且对于许多应用问题也是重要的。

    The purpose of this note is to point out : the principle of nested intervals is important not only in the theory of real number but for various applied problems .

  8. 第二:给出了新的模糊数的距离的定义,并在新的定义的基础上,仿照实数系理论的体系,给出了相应的定理和结论。

    ⅱ: give a new definition to the distance of the fuzzy numbers . We get the relevant theorems and conclusions based on the new definition , imitating the real analysis .

  9. 本文发展了Cantor用基本列构造实数域的理论,提出超基本列的新概念;

    This paper develops cantor 's theory of making real numbers field with cauchy sequence . It put forwards the new concept of hyper cau - chy sequence .

  10. 实数连续性理论在平面几何上的应用

    An Application of the Theory of Real Number 's Continuity in Plane Geometry

  11. 实数的连续性理论是构筑极限理论的重要基础;

    The theories of real continuity lead to the fundamental basis of limit theory .

  12. 然而,他的证明需要另外一个假设,那就是关于“实数”注的理论。

    However , his proof required the assumption that the theory of ' real numbers " * was satisfactory .

  13. 从实数集的完备性的公理出发到讲解“实数理论”的一系列定理及用这些定理证明的后继定理都应该突出“实数集的完备性”。

    The Real Number Completeness should be highlighted from the completely recognized theory of the real number collection to the explanation of a series of definitions in the Real Number Theory .