表情识别
- 网络facial expression;Facial expression recognition;emotion recognition
-
1型强直性肌营养不良患者的面部表情识别与CTG的重复扩增相关
Facial emotion recognition in myotonic dystrophy type 1 correlates with CTG repeat expansion
-
此外,本文还基于粗糙集理论,结合集成学习理论,对人脸表情识别方法进行研究。
Furthermore , efficient emotion recognition methods are also studied based on rough set theory and ensemble learning .
-
基于优化的BP神经网络在表情识别中的研究
Research of Expression Recognition Based on Optimized BP Neural Network
-
基于人脸局部特征和SVM的表情识别
A Face Expression Recognition Method Based on Face Features and Support Vector Machine
-
基于遗传算法进化的SVM人脸表情识别
Expression Recognition Based on SVM with GA Evolution
-
基于类内分块PCA方法的人脸表情识别
Human face expression recognition based on within-class modular PCA
-
基于自动分割的局部Gabor小波人脸表情识别算法
Facial expression recognition algorithm based on local Gabor wavelet automatic segmentation
-
基于Gabor小波变换和两次DCT的人脸表情识别
Facial Expression Recognition Based on Gabor and Two Times DCT
-
一种基于Fisher准则的二维主元分析表情识别方法
A Novel Two-Dimensional PCA Facial Expression Recognition Method Based on Fisher Ratio
-
基于改进光流和HMM的人脸表情识别研究
The Research on Facial Expression Recognition Based on Optical Flow and HMM
-
一种基于Gabor小波特征的人脸表情识别新方法
New Approach for Facial Expression Recognition Based on Gabor Features
-
基于FLD特征提取的SVM人脸表情识别方法
The Expression Recognition Method of SVM Based on FLD Extracting Feature
-
一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法
Facial Expression Recognition Based on Local Gabor Filter Bank and PCA + LDA
-
基于Gabor小波的人脸表情识别
Facial Expression Recognition Based on Gabor Wavelet Transform
-
面向表情识别的AVR和增强LBP特征选择方法
AVR and enhanced LBP feature selection method for facial expression recognition
-
基于Gabor滤波的多分类器集成人脸表情识别
Facial Expression Classification Based on Gabor Filters
-
研究了基于SNE降维和SVM作为分类器的人脸表情识别方法。
A facial expression recognition method based on SNE and SVM was studied .
-
提出一种基于特征点LBP信息的表情识别方法。
First , the LBP feature in facial expression recognition is presented .
-
特征点LBP信息在表情识别中的应用
Application of LBP information of feature-points in facial expression recognition
-
基于嵌入式HMM的脸部表情识别
Facial Expression Recognition Using Embedded HMM
-
基于改进ODP和Gabor小波相结合的表情识别
Expression Recognition Based on Improved ODP and Gabor Wavelets
-
第三,建立了基于HMM的人脸表情识别系统,并通过实验得到了初步识别结果。
Finally , this thesis builds a facial recognition system based on HMM and gets the results through experiments .
-
在表情识别过程中,本文采用面部几何特性和SVM方法生成表情分类器,实现对人脸表情的自动分类。
Proposed a pre-classification method for face expression recognition based on facial feature geometry characteristics and recognized the facial expressions with the SVM . 4 .
-
实验结果表明了该方法能有效提高面部表情识别率,有效解决HMM参数估计问题。
Experimental results show that the new method provides satisfactory recognition performance and the method is powerful for HMM parameter estimation .
-
提出了一种新的基于双决策子空间和径向基函数(RBF)神经网络的人脸表情识别方法。
A facial expression recognition method based on double discriminant subspace and Radial Basis Function Neural Network ( RBFNN ) is proposed in this paper .
-
在特征提取环节中,Gabor特征是一种纹理特征,是在人脸表情识别中最为成功的提取提取方法之一。
As a kind of texture presentation feature , Gabor feature is a successful feature extraction method in facial expression recognition field .
-
设计了一个人机情感交互的程序,通过ASR机器人来验证人脸表情识别,在不同的人脸表情库上对比识别效果。
We design a program of human-computer emotional interaction . It is verified through the ASR robot in different facial expression databases .
-
实验证明本文提出的融合二维Gabor小波变换和PCA+FLD特征降维的SVM表情识别算法是一种较好的人脸表情识别方法。
Experiments show that the method of SVM expression recognition based on the proposed fusion two Gabor-dimensional wavelet transform and PCA + FLD is a better method in facial expression recognition .
-
研究了基于不同尺度不同方向Gabor特征融合的人脸表情识别,并与分数阶域特征融合进行了比较。
This paper also discusses the facial expression recognition based on fusion of different orientations and scales of Gabor features and compares it with that based on multi-order of FrFT .
-
然后用直方图均衡化、中心化等方法使得最终的图像具有相同的灰度均值和方差。(2)把独立成分分析算法引入到表情识别领域中,提出了基于ICA的人脸表情识别算法。
Histogram equalization is used to make all the cropped pictures have the same variance . Secondly , we introduce the basic theory of Independent Component Analysis ( ICA ) in detail , and present an algorithm based on ICA .