积分算子
- 网络integral operator;integration operator
-
分数次积分算子在弱Hardy型空间中的有界性
Boundedness of the fractional integral operator in weak type Hardy space
-
文章主要介绍了由一个积分算子刻划的p叶解析星像函数和p叶解析凸像函数类的新子类,建立了包含关系,并讨论了它们的一些性质。
The paper presents the new subclass of application of certain integral operator to star-like and convex multivalent analytic functions , establishes inclusion relations and discusses their qualities .
-
A(p)函数类上的积分算子
Integral operators of A ( p ) functions
-
强奇异积分算子交换子的一个变形sharp函数估计
A Variant Sharp Function Estimate for Commutators of Strongly Singular Integral Operators
-
本文建立了强奇异积分算子一阶交换子的一个变形sharp函数估计。
In this paper , a variant sharp function estimate is established for commutators of strongly singular integral operators .
-
Hardy空间上一类带可变核的积分算子
A class of integral operators with variable kernels on Hardy Spaces
-
从转移概率函数的定义出发,证明了Markov积分算子半群是非退化的。
The non-degenerate of the Markov integrated semigroup is proved according to the definition of transition probability functions .
-
带可变核的多线性分数次积分算子在弱Hardy空间上的有界性
Boundedness of Multilinear Fractional Integral Operators with Variable Kernels on Weak Type Hardy Spaces
-
θ(t)型奇异积分算子在各向异性Hardy空间的有界性
Boundedness of θ( t ) - type Singular Integral Operators in the Anisotropic Hardy Space
-
球面上的Riesz位势型积分算子的L~p(Ωn)和Lipα有界性
The LP (Ω n ) and Lipa Boundedness about the Integration Operator of Riesz Potential Type on Sphere
-
对于卷积型积分算子,可将运算量由原来的O(N2)减少至O(N)
For convolution integration operator , the computation will be decreased from O ( N 2 ) to O ( N ) .
-
Fourier积分算子在Herz型空间上的有界性
Boundedness of Fourier Integral Operator on Herz Spaces
-
首先,对于第一个新的子类S(λ,μ)(m;h),我们讨论了它的一系列的包含关系以及在积分算子的作用下,性质是保持不变的。
First , to the class S_ (λ,μ)( m ; h ), we derive some inclusion relations , and the properties are kepted invariable under the integral operator .
-
广义Laplace积分算子不等式
Generalized Laplace Integral Operators Inequalities
-
一类抽象VOLTERRA型线性积分算子
On the Abstract Volterra Linear Integral Operator
-
分数次积分算子在加权LEBESGUE空间和LIPSCHITZ空间的有界性
Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces
-
本文讨论了混合指合数型积分算子在Lp空间的性质,建立了该类算子的Lp饱和定理。
We study the properties of the mixed exponential type integral operators in Lp-space and established their Lp-saturation theorems .
-
伴随HERZ空间的HARDY空间上的分数次积分算子
Fractional integrals on Hardy spaces associated with Herz Spaces
-
Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;
We obtain that the generator of the Markov integrated semigroup is densely defined in l_ ∞ if and only if q-matrix Q is uniformly bounded .
-
最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理。
Finally , in an ordered Banach space , a generation theorem is obtained for the increasing integrated semigroup of contractions .
-
Clifford分析中一类拟Cauchy型积分算子的不动点定理及迭代构造
The Fixed Point Theorem and the Iterative Approximation of Some Class Quasi-Cauchy Integral Operator in Real Clifford Analysis
-
在齐型空间上定义了一类广义奇异积分算子,证明了该算子的加权Φ有界性,这里Φ是Young函数,同时给出了它的一些应用。
A kind of singular integral operators on homogeneous spaces are defined . The weighted Φ boundedness for the operators are obtained , where Φ is the Young function , and some applications are given .
-
将一类抽象Volterra型线性积分算子用于求解抽象动力方程边值问题,此方法称为积分算子求解法。
Volterra linear integral operators is studied in order to solve the boundary value problems of abstract kinetic equation .
-
推广的Libera积分算子对S(α,β)类函数的运算
Calculation of spreading Libera integal operator to s (α, β) function
-
齐型空间上Herz空间中的分数次积分算子
The fractional integration operator on Herz spaces on spaces of Homogeneous type
-
介绍了弱Hardy空间及其性质,讨论了广义分数次积分算子交换子在弱Hardy空间上的有界性。
In this paper , the authors introduced the Weak-Hardy space and discussed the boundedness of commutators of generalized fractional integral operators on it .
-
运用四元数Cauchy核奇异积分算子理论和C代数理论,建立了一个Fredholm模结构。
In this paper , we construct a Fredholm module by using singular integral operators theory with the quaternionic Cauchy kernel and C ~ - algebra theory .
-
本文研究含有积分算子的二阶拟线性奇摄动微分积分方程式的Dirichlet问题;
This Paper represents the singularly Perturbed Dirichlet problem for the second order quasilinear differential - integral equation with a nonlinear integral operator .
-
Poisson积分算子是求解Laplace方程边值问题时导出的一种算子,它可以明确地将这些方程的解表达出来。
Poisson integral operator derives from solving boundary value problems of Laplace equations , and it may explicitly express the solutions of these equations by a formula .
-
首先引入一类新的特殊函数,继之利用它构造了Fourier积分算子,并运用特殊手段导出Cauchy问题的拟基本解。
First we introduced a class of new special function , then Using it we constructed Fourier integral operator and by special means followed the parametices of Cauchy problem .