首页 / 词典 / good

电离能

diàn lí nénɡ
  • ionization energy
电离能电离能
  1. 用碳自由基的电离能计算其屏蔽一钻穿常数S(R(C))~′,可定量碳正离子的稳定性。

    The stability of carbocation was quantified with the penetrating shielding constant SR ' ( C ) obtained basing on . the ionization energy Ip of carbon free radical .

  2. 可能是由于在纯Si晶体中有较高的电离能,从而限制了Si等离子体中自由电子的形成。

    Possibly , this is due to the higher ionization energy of Si in pure silicon crystal , which limited the free electron generation in the Si plasma .

  3. 中能质子在Si和GaAs中导致的非电离能损研究

    Non-ionizing Energy Loss of Middle Energy Proton in Si and GaAs

  4. 根据P区元素在周期表中的位置确定位置指数W,并用W预测P区元素的电离能。

    Position index W is defined with the position of P-group element and ionization potential is calculate with w.

  5. 高Z高剥离态离子基态电离能的计算

    The Calculation of Ground Ionization Energies of High Z and High Ionization Ions

  6. 事实上就是电离能,K,,in,fact,,is,the,ionization,energy。,而且如果你查阅图表,元素周期表上对此就有显示。

    K And , in fact , if you go to the chart , to your Periodic Table indeed there it is .

  7. Watson球近似计算气态分子的电离能

    A Watson sphere calculation of ionization energies of gaseous molecules

  8. 用BASIC语言建立多电子原子(离子)各态电离能数据库及其管理系统。

    This paper reports the database and its managing system for the ionization potentials of multi-electron atoms and ions .

  9. 大气中的低电离能也将是影响的地球放射性排放量,尤其是当X射线辐射工程。

    The ionisation of the low atmosphere could also be the effect of the radioactive emissions of the Earth , especially when the X radiation works .

  10. 理论计算出Li、Na的受主电离能分别0.11和0.16eV,两者相差很小。

    The acceptor ionization energies of Li and Na calculated by DFT are 0.11 eV and 0.16 eV , respectively . The difference between them is small .

  11. 本文用半经验的CNDO/2分子轨道法,计算了C4H4和C4(CH3)4的电子能级、电子总能量、电荷分布和电离能。

    The energy levels , total energies and ionization energies of tetrahedrane and tetramethyl & tetrahedrane have been calculated by the CNDO / 2 method in this paper .

  12. 碳中心自由基电离能QSPR研究

    Research QSPR on Ionization Potential of C-Centered Radicals

  13. 与其它现有理论不同之处在于本文的模型势的选择是让参与跃迁的K电子的结合能(bindingenergy)等于其电离能。在MPOBK近似中,K壳层电子俘获截面是一个解析表达式。

    In the present method , the effective potential is chosen to make the binding energy of the transition K-electron equal to its ionization potential and the K-shell electron capture cross section is an analytical expression .

  14. 理论和实验证明了双预电离能较好地改善TEACO2激光器的放电性能,尤其是有望实现用于分离某些同位素的弱线输出。

    The theories and experiments prove that double pre-ionization can improve the discharge properties of TEA CO_2 laser . Especially , weak spectra output used for separating certain isotope with double pre-ionization device .

  15. Slater型原子轨函和电离能的近似计算法的改进

    Modified slater 's method for the calculation of the ionization energies of atoms

  16. 使用不同的基组计算团簇YO的电子亲和能和电离能。

    Different basis sets were used to calculate the electron affinity ( EA ) and ionization potential ( IP ) of YO .

  17. 4f屏蔽与镧系元素的第一、第二、第三电离能&SLATER法的应用和改进

    4f-screening and the first , second and third ionization potentials of lanthanides & application and modification of Slater method

  18. 由此对简单分子CO2和复杂贫子Cr(CO)5CS的分子轨道和电离能进行了计算。

    The simple molecule CO2 and the complex Cr ( CO ) 5CS have been taken as samples to compare the calculation results with those of without Watson sphere .

  19. 我们可以发现有效的z等于n的平凡,乘以电离能除以里德堡常数,这些所有再开方,所以等于n乘以,除以RH整体的平方根。

    So , if we just rearrange this equation , what we find is that z effective is equal to n squared times the ionization energy , IE all over the Rydberg constant and the square root of this .

  20. 某些分子电子结构的SCM-DV-Xα方法计算I.Cr(CO)6、V(CO)6和CH3OH分子的电离能计算

    Calculation of electronic structure for some molecules by scm-dv-x_ α method i. calculation of ionization energies for cr ( co ) _6 , v ( co ) _6 and ch_3oh

  21. 超短超强激光与等离子体相互作用过程中,在临界密度面附近产生能量很高的超热电子,当其能量超过靶后冷物质K壳层的电离能时,就会激发冷物质的Kα特征线。

    During the interaction of ultra-short and ultra-intense laser pulse with plasmas , high energy electrons will be produced near to critical-density surface . When the hot electrons knocked out inner-shell electrons of the cold material , K α characteristic lines emission will be created .

  22. 运用DFT方法进行量子化学计算研究,得到了NQ、NQS和部分芳香胺的标准氧化还原电势、气相电离能、电子亲和势和苯胺上N原子的电荷密度分布。

    Standard redox potentials , gas phase ionization / affinity potentials and charge density distributions of some reagents were calculated by DFT method . As sensitizers , NQS is more active than NQ .

  23. 分子内氢键还可以显著改变天冬酰胺HOMO轨道附近的几个轨道的成分,因而造成不同构型垂直电离能数值有显著差异。

    Different intramolecular hydrogen bond interactions can also significantly change the components of several molecular orbits near HOMO orbital of the asparagine conformers , resulting in a pronounced difference in their vertical ionization energy values .

  24. 测量了自室温至1000°k范围内碳化硅单晶的高温电学性质,求得氮施主的电离能为0.056电子伏。讨论了引起实验误差的一些异常现象及其产生原因。

    High temperature electrical properties of silicon carbide single crystals have been measured in a temperature range from room temperature to 1000 K , and the ionization energy of nitrogen donors is found to be 0.056 eV . Anomalous phenomena that result in experimental errors and their origins are discussed .

  25. 模型反映了UFP的一些重要特性,例如块体材料逸出功,UFP原子半径和第一电离能,而忽略UFP更精细的结构。

    The model reflects the atomic properties , such as bulk work funtion , atomic radius and first ioni-zing energy value , and ignores the finer UFP structures .

  26. 非电离能损(NIEL)引起的位移损伤是导致空间辐射环境中新型光电器件失效的主要因素。

    The displacement damage due to non-ionizing energy loss ( NIEL ) is the main reason of device-malfunction in spatial radiation environments .

  27. 根据Koopmans定理,计算了纳米粒子簇的分子轨道能级,得到了电子能谱峰的位置,理论计算Si在1s的电子电离能为1.862~1.875keV,其尺寸效应与实验结果的变化趋势一致。

    The molecular orbital level and electron spectrum peek of nanocluster are calculated . The results show that the ionization energy is 1.862 ~ 1.875 keV , which are in agreement with the experiment results .

  28. 元素电离能呈周期性变化的规律能解释这类无机盐的FDMS行为和预测其它族元素组成的无机盐行为。

    The periodical rule of element ionization energy can explain the FDMS characteristic of the kind of salts and predict FDMS characteristic of other group inorganic salts .

  29. He良好的控制等离子体的能力不仅在于He高的电离能不易形成LSC波,更主要地在于He良好的导热性能抑制了LSC波的扩展。

    The high ionization energy and good thermal conductivity of helium , among which the thermal conductivity is the dominant factor , contribute to its excellent specificity to suppress the laser induced plasma which cause the LSC wave can not easy to generate and propagate .

  30. 耦合表象下的原子第一电离能的计算

    Calculation of the first ionization potential of atoms in coupling presentation