环绕数

  • 网络Linking Number;Winding Number
环绕数环绕数
  1. 介绍了如何利用沿着环上的周期轨道演化态构造一个环绕数为n/m,且满足Einstein-Brillouin-Keller量子化条件的谐振环的半经典波函数。

    In this paper we show the construction of a semiclassical wave function for a resonance torus with winding number n / m , and satisfying the Einstein-Brillouin-Keller ( EBK ) quantization condition , by evolving a state along periodic orbits on the torus .

  2. 矢量数据栅格化的一种有效方法&环绕数法

    A high-effective algorithm for rasterization of vector data & winding number algorithm

  3. 数值上,我们选择一个环绕数为29/39的谐振环(非常接近于量子化环(8,3))构造波函数。

    Numerically , we choose a resonance torus of winding number 29 / 39 , a very close periodic torus convergent to the quantizing torus corresponding to state ( 8,3 ), to build wave function .

  4. 针对一般运动学方法的不足,提出了一种基于零倾角轨道变换的运动学新方法,并用这种运动学新方法分析了参考卫星轨道倾角对环绕卫星轨道根数的影响。

    A new kinematics method based on zero inclination orbit transformation was proposed . The influence of the reference satellite inclination on surrounding satellite orbit has been analyzed by the new kinematics method .