折合质量

  • 网络reduced mass
折合质量折合质量
  1. 而在有关能量与里德伯常数的表达式中,采用折合质量确实是正确的。

    In energy formula , it is indeed correct to use the reduced mass .

  2. 两体问题中的折合质量

    Reduced Mass in Two Bodies Problem

  3. 折合质量的运用泵送预拌大体积混凝土工程质量控制

    The Construction Quality Control of the Mass Ready Mix Concrete Transmitted by Pumps

  4. 应用激光质谱法选择探测一氧化碳折合质量的运用

    Selective detection of CO using laser mass spectrometry

  5. 折合质量的运用

    The application of mass

  6. 分子中具有红外活性的两个原子间的振动频率与化学键的力常数及折合质量有关。

    The vibrant frequency of carbonyl is concerned with the force constant and convert mass of the carbonyl .

  7. 振动频率在(4.25)中给出,只是m用折合质量代替。

    The vibration frequency is given by ( 4.25 ), except that m is replaced by the reduced mass .

  8. 本工作将力常数和折合质量的比值表示成理论计算结果中原子的电荷、化学键的键长和键级等信息的函数,由此建立起理论计算与实验红外光谱频率之间的联系。

    The ratio of force constant and convert mass was expressed a function of electric charge , bond length and bond order etc.

  9. 同时还发现,转动态-态传能中相对截面随着碰撞对的折合质量的减小而下降。

    It was also found that the relative cross sections of rotational energy transfer decrease approximately with decreasing the reduced mass of the collision - pair .

  10. 计算结果表明,折合质量的增大,键角的减小等分子结构特征,都将导致能谱结构混沌化程度的增高。

    The increase of the reduced masses as well as the decrease of the bond-angles will ital to the increase of the irregular ( chaotic ) extents of responding eigenvalue-spectra of vibrating-energy .

  11. 发现此关系式与主量子数和角量子数有关,而与核电荷数以及折合质量无关。

    It is pointed out that the relation has something to do with the principal quantum number and the angular quantum number , but nothing to do with the nuclear electronic number and reduced mass .

  12. 分析计算结果发现由于离子的参与,单体分子振动的力常数和折合质量均会发生变化,导致红外振动谱线发生不同程度移动;

    According to the results , the cations are found to be prone to act with the oxygen atoms and because cations take part in molecule 's vibrations the force constants and reduced masses are changed .

  13. 证明了:在玻尔的电子轨道半径表达式中,用折合质量代换电子质量不能求得轨道半径,只能求得电子(轨道粒子)&质子(原子核)之间的距离。

    We prove that replacing the electron mass by the reduced mass in Bohr 's equation for the radius of the electron does not yield Bohr 's orbit radius , but rather the electron ( orbit particle ) - proton ( nucleus ) separation .