态射

  • 网络Morphism;Morphisms;homomorphism
态射态射
  1. Abel范畴中态射乘积的性质

    The properties of morphism composition in Abel category

  2. 采用同调理论的观点探讨了C代数上HilbertC模作为对象和有界模算子作为态射构成的范畴。

    As in homology , the notion of injectivity is introduced in the category whose objects are Hilbert C module over a C algebra and whose morphism are bounded module operators .

  3. 范畴中态射集的sharp序

    The sharp partial ordering for a morphism set in a category

  4. 结论若f为同伦正则态射,则f必为覆叠同伦正则态射;

    Conclusion The map f is a covering homotopy regular morphism if it is a homotopy regular morphism ;

  5. Liberal理论态射的一些性质

    Some Properties of the Liberal Theory Morphisms

  6. 介绍了有界完全Domain的相关性质,用函数空间的研究方法证明了以ScottDS连续映射为态射,以有界完全Domain为对象的范畴的笛卡儿闭性;

    In this paper , we gave various properties of bounded complete domain . And we proved , with Scott continuous functions as morphisms , the category of bounded complete domain is Cartesian closed ;

  7. 关于一般范畴中态射的加权Moore-Penrose逆

    On Weighted Moore-Penrose Inverses of Morphisms in General Category

  8. 态射的Moore-Penrose逆的构成

    The form of Moore-Penrose inverse of a morphism

  9. 文献[1]中给出了:具有零对象的范畴φ中单态射f:E→G的核i:H→E为零态射O(H,E)。

    Reference [ 1 ] gived that kernel I : H → E of monic morphism f : E → G in the categories with zero object is zero-morphism O_ ( H , E ) .

  10. 具有核的态射的w-加权Drazin逆

    The w-weighted Drazin Inverse of Morphisms with Kernels

  11. 一类希尔伯特级数的计算以及Frobenius态射下向量丛的稳定性

    A Computation of Some Hilbert Series and the Stability of a Vector Bundle under Frobenius Morphism

  12. 态射的Drazin逆

    The Drazin Inverses of Morphisms

  13. 以有上界且有限可分的偏序集为对象,以它们之间的D~△-连续的函数为态射组成的范畴是一个Cartesian闭范畴。

    The category FSBP in which objects are finitely separating and upper bounded posets and arrows are D ~ △ - continuous functions between them , is a cartesian closed category .

  14. 定义了范畴中态射集的sharp序,给出了它的一些性质和等价刻划,并讨论了它与态射集减序的关系。

    This paper defines the sharp partial ordering for a morphism set in a category . Its some properties and equivalent characterizations are also given . Furthermore , the relation between the sharp partial ordering and the minus partial ordering is discussed .

  15. 态射的Moore-Penrose逆是矩阵的Moore-Penrose逆在有对合的范畴中的推广。本文给出加法范畴及Abel范畴中态射的和与积的Moore-Penrose逆存在的充分条件和一些性质。

    In this paper , we give some sufficient conditions and properties for Moore-Penrose inverses about product and sum of morphism in Abel category and additive category with an involution .

  16. 目的在点标道路连通CW空间的同伦范畴中,引进覆叠同伦正则态射的概念,研究它存在的条件、性质以及它与覆叠同伦单(满)态和覆叠同伦等价之间的关系。

    Aim To define covering homotopy regular morphism in the homotopy category of pointed path-connected CW-spaces . To discuss its existence conditions , properties and the close relationships to covering homotopy monomorphism ( epimorphism ) and covering homotopy equivalence .

  17. 相同性质与关系的抽取是性质范畴Cr(x)及其态射范畴D(x)中的态射,由它们诱导的同余关系所生成的商范畴就是概念抽象与规则提取范畴。

    It is shown that abstraction of identical attribute and relation is morphism of attribute category Cr ( x ) and its morphism category D ( x ), some quotient categories , which generated by congruence relations produced identical morphisms , are categories of conception abstraction and ruler abstraction respectively .

  18. 第一章讨论覆叠同伦正则态射,首先在点标道路连通CW空间的同伦范畴中引进覆叠同伦正则态射的概念,并研究了它存在的条件、性质。

    In Chapter 1 , we discuss the covering homotopy regular morphism . First , we introduce the concept of covering homotopy regular morphism in the homotopy category of pointed path-connected CW-spaces and discuss its existence conditions and properties . Second .

  19. 把由向量丛态射诱导出的三个特殊丛推广到模丛态射中,得到了相应的三个模丛:ker丛、im丛和coker丛;

    Expand three especial induced vector bundles induced by a morphism of vector bundles to those induced by a morphism of module bundles so that three module bundles , ker bundles , im bundles and coker bundles are obtained .

  20. 给出了态射的Drazin逆存在的条件及显式表达式,改进并推广了[1]、[2]与[3]中的一些主要定理。

    This paper gives existential conditions and expressions for the Drazin invees of morphisms . These results improve and generalize some important results in [ 1 ] [ 2 ] and [ 3 ] .

  21. 当dimE≤dimX-2时,称.f:X→Y为小收缩态射。构造极小模型的关键就是要搞清小收缩态射f:X→Y的例外集E的结构。

    F : X → Y is called a small contraction if dimE ≤ dim X - 2 . The critical step for constructing the minimal model is to make clear the structure of the exceptional locus E of small contraction f : X → Y.

  22. 关于高维代数族的nef-值态射的结构

    On structure of nef - value morphisms of projective varieties

  23. 抽象数据类型理论及其态射关系

    The Abstract Data Types Theory and Its Homomorphic Mapping Relations

  24. 范畴中态射集减序的刻划

    Characterizations of the Minus Partial Order of Morphism Set in a Category

  25. 李群胚的形式场和态射;

    The forms field and morphisms of Lie groupoids ;

  26. 第二章讨论同伦正则态射的应用。

    In Chapter 2 , we discussed the applications of homotopy regular morphism .

  27. 着重于半连续格范畴的态射类的构成,给出了一个新的刻画。

    Especially gives a new characterization on morphisms of category of semicontinuous lattices .

  28. 《撞车》&打开人们的心锁态射的柱心-幂零分解

    Crash & A Key to Mind s Lock The Core-Nilpotent Decomposition of Morphisms

  29. 预加法范畴中态射集星型序的刻划

    Characterizations of the star type partial orders of morphism set in a preadditive category

  30. S-SI-BCK-代数范畴的满态射

    Epimorphisms In the Category of S-SI-BCK - Algebras