引力加速度
- 网络Gravitional Acceleration
-
本文提出了计算盘星系引力加速度的网格差分法,给出了三种计算引力加速度的方法。
The cell difference method for computing the gravitational acceleration of disk galaxies is described .
-
盘星系动力演化的数值模拟Ⅰ&盘状引力加速度的计算方法
Numerical simulation of dynamical evolution of disk galaxies I & computation method of gravitational acceleration of disk galaxies
-
针对目标与拦截弹引力加速度差的几种简化模型,推导了相应的零控拦截流形表达式,并进行了定量的精度分析。
The expression of the zero-effort-intercept manifold for several simplified model of the gravitational acceleration difference between the target and the interceptor was deduced , the quantitative precision analysis was also made .
-
从这样的引力和加速度的等效性,爱因斯坦构建了他的广义相对论。
From the equivalence of gravity and acceleration , he constructed his general theory of relativity .
-
一个电脑程序计算了必要的飞行轨迹,包括借助木星引力获得加速度。
A computer program calculated the necessary trajectory , including a swing by Jupiter to pick up velocity .
-
引入了常数标量势的概念,揭示了引力场中加速度的成因,导出了若干公式,统一了引力和惯性力,并将理论与广义相对论的结果作了比较。
With the quotation of the concept of the constant scalar potential , the author explained the cause of the acceleration in gravity field , reckoned some formulas , unified the gravity and the inertia force , then compared the theory with the general relativity .
-
我们用新的理论方法得到了核反应系统产生非稳定性的判据,它与太阳内部的引力(重力)加速度和温度梯度的性质密切相关。
We use our new theoretical approach to obtain the instability criterion for the nuclear reaction systems , which relates closely to the gravitational acceleration and temperature gradient in the solar interior .
-
推导了正规化地球引力位系数表示的地球引力加速度及其对位置的偏导数,避免了不同阶、次非正规化球谐函数数值因相差过大而影响精度的问题。
The author deduces formulas of the Earth 's gravitational acceleration as well as its derivatives with respect to position in fully normalized spherical harmonic coefficients , thus avoiding the gap of quantity level when denoted in non-normalized harmonic coefficients .
-
即使这样,由于纯引力场能量是负定的,因此由视界引力加速度κ+决定的温度也必然是负定的,而不可能是正定的。
However since the energy of gravitational field must be negative , the horizon temperature can 't be positive , it must be negative .
-
在牛顿近似和弱场近似下,相应于矢量场的反引力与相应于张量场的吸引力互相抵消,使得检验粒子在球对称静态引力场中的加速度为零,这显然与牛顿万有引力现象矛盾。
In Newtonian approximation and weak gravitational field , acceleration of a particle in a spherically symmetric and astatic gravitation field is zero . The result is obviously not in agreement with gravitational phenomena .