基波功率

  • 网络fundamental power
基波功率基波功率
  1. 接着本文介绍了两重四象限变流器的控制技术,包括载波移相、单位基波功率因数控制、有功电流均流控制、无功电流均流控制等。

    Secondly , this article describes more control technologies can be used for the double and four quadrant converter . Then , this paper introduced carrier phase-shifting modulation , the unit fundamental power factor control , balanced control of active current and reactive current .

  2. 利用S,P,Q和N构成功率四边形,由S,P和Q计算非正弦交流电路的基波功率因数cos(?)

    If S , P and Q are known , using the power quadrangle can compute the fundamental harmonic power factor cos (?)

  3. 电力系统无功功率平衡非常重要,无功功率补偿能进行基波功率因数校正。

    Reactive power balance of power system is important and reactive power compensation can correct displacement power factor .

  4. 仿真结果表明,电机转速比是影响交交变频轧机系统网侧基波功率因数与电流总畸变率的关键原因。

    The simulation results show that the speed ratio of the motor mostly affects the total harmonic distortion of the current and the displacement power factor .

  5. 描述了一种在三相波形高度畸变的系统中可正确测量基波功率的方法。

    A correct method for measuring the fundament component of power in a high distorted three phases system is described , Its cost is rather low .

  6. 任何一种非线性负载所消耗的功率都可以分为两部分,一部分为从电网中吸取的基波功率,另一部分则是负的谐波功率。

    The power which any non-linear loads consumes can be divided into two sides , One is base power absorbed in power and the other is minus harmonics power .

  7. 从理论上推导出电力系统中的非线性负荷在吸收系统基波功率的同时向系统发出谐波,从而成为系统的谐波源。

    In theory , non-linear load absorbs fundamental power from the power system , and injects harmonic power into the system as the harmonic source of the power system .

  8. 同时计算了当晶体冷却情况变化,基波功率变化以及晶体中心和光束中心不重合的情况下的晶体内部温度梯度。

    When cooling conditions , power of the base wave , or center of the crystal and that of the beam is detached , the inner temperature gradient of the crystal is also calculated .

  9. 而倍频的转换效率与基波的功率密度成正比。

    The conversion efficiency of frequency doubling is proportional to the power density of fundamental wave .

  10. 导出了基波电磁功率、稳定谐波电磁功率及脉动谐波电磁功率的计算公式。

    Then , the calculation formulas of the fundamental and steady harmonic as well as pulse harmonic electromagnetic powers are derived .

  11. 实验结果指出,提高基波光功率密度可大大提高脉冲激光的倍频能量转换效率。

    Experimental result points out that the energy conversion efficiency of a pulsed laser can be sharply increased with the enhancing of the fundamental wave power density . [ WT5HZ ]

  12. 分析了SVC装置现有的无功功率检测方法,提出了一种基于正交小波变换的基波无功功率实时检测方法。

    A novel method to detect real-time reactive power was presented based on wavelet transform .

  13. TBC能补偿基波无功功率,平衡连接到系统的负载。

    The TBC compensates the fundamental reactive power and balances the load connected to the system .

  14. 基于8098单片机的电网基波无功功率快速测量

    Fast Measuring First Harmonic Reactive Power in Power System Based on 8098 Single Chip Processor

  15. 提出了利用三角函数正交性测量基波无功功率的递推算法。

    An iterative algorithm based on an orthogonal characteristic of trigonometric function is proposed to measure fundamental reactive power .

  16. 随后,论文介绍了基于基波零序暂态功率方向的接地选线装置的原理、结构及采用的技术方法,并进行了实验室物理模拟实验研究。

    Second , the theory and technological means of the fault line selection based on the zero sequence power direction of transient fundamental frequency are introduced , and some experimental studies with physical simulation model in a laboratory are done .

  17. 最后,设计了一个含基波放大器的前馈功率放大器系统。

    In the end , the paper design a feedforward power amplifier system with a principal wave amplifier .

  18. 根据三角函数的正交性和对称性求解基波参数,采用递推算法快速计算基波无功功率。

    Fundamental parameters are calculated by symmetrical and orthogonal characteristic of trigonometric function , and the iterative algorithm can calculate fundamental reactive power fast .

  19. 在此基础上,研究了一种新型基于基波磁通补偿原理与调谐滤波技术相结合通过三绕组变压器在不取用基波功率的前提下获取电网中谐波电能的技术,并推导了这一理论。

    On this basis , a novel technology of extracting and using harmonic energy in power grid based on the principle of fundamental magnetic flux compensation and tuning filter technology is proposed and analyzed through the three-winding transformer in this paper .

  20. 基波和谐波潮流进行分离相关迭代,最终求出各节点的基波和谐波电压以及各支路的基波功率和谐波电流。

    The fundamental and harmonic nodal voltage and branch current are solved by decoupled iteration of fundamental and harmonic power flow .