耦合强度

  • 网络Coupling strength;coupling intensity
耦合强度耦合强度
  1. 讨论了N等电子陷阱的电声子耦合强度及有效束缚激子半径随压力的变化关系。

    The pressure behaviors of electron-phonon coupling strength of N isoelectronic trap and effective radius of bound exciton are discussed .

  2. 这些现象表明,耦合强度C和耦合强度的权重p对细胞内钙信号过程都有着重要的调控作用。

    These phenomena illustrates that both the coupling strength and the weight of coupling intensity may play the vital roles in intracellular calcium signal for the biological systems .

  3. 采用数值计算的方法,讨论了初始场压缩因子r、光场与原子的耦合强度g对原子偶极压缩的影响。

    The effects of the squeezing degree r of initial field and the coupling constant g are discussed by the method of the numerical calculations .

  4. Ce∶KNSBN晶体双光束耦合强度和温度特性

    Intensity and temperature dependence of two wave coupling in the Ce ∶ KNSBN crystal

  5. 在密度泛函理论的框架下,应用对称性破损方法,研究了以N&N基团为单桥的二嗪类双核Cu(Ⅱ)体系的磁耦合强度及磁-结构关联。

    A theoretical study on magneto structural correlation for binuclear Cu (ⅱ) complexes bridged by single N-N group from diazine has been investigated by using broken symmetry approach within the framework of density functional theory .

  6. 在所有节点动力学系统的最大Lyapunov同时降为负值的区域里,选取适当的耦合强度值,整个复杂网络存在稳定的混沌同步现象。

    In the range that all the maximum Lyapunov exponents of the nodes are negative , selecting appropriate coupling strength , a stable synchronization is obtained in whole complex network .

  7. 测量了样品的复磁化率,结果表明超导体晶粒间的Josephson结的耦合强度与样品的制备过程有关,对不同热处理的样品测其比热;

    The measurement of complex susceptibility shows the strength of Josephson coupling among the superconducting grains depends on the process of sample preparation .

  8. 对于具有平衡拓扑结构和任意耦合强度的复杂网络,基于Lyapunov稳定性理论,使用自适应控制方法不仅可以实现两个复杂网络间的外同步而且可以实现每个网络的内同步。

    Based on Lyapunov stability theory , we prove that for networks with balanced structure topology , not only outer synchronization but also inner synchronization can be asymptotically reached by using arbitrary coupling strength .

  9. 在此基础上,利用耦合法设计了一种同步控制器,并根据Lyapunov指数判别法确定了耦合强度,分别通过单向耦合和双向耦合实现了两个混沌系统的投影同步。

    Furthermore a synchronization controller is proposed using coupling method , the coupling intension is achieved via Lyapunov stability theory , and synchronization between two chaotic systems is realized by unilateral and bilateral coupling method respectively .

  10. 分析结果表明,Co膜与FeNi膜的层间耦合强度及类型取决于中间隔离层(铝膜或氧化铝膜)的性能和厚度;

    The dependence of the magnetic coupling strength and type between Co and FeNi films on the property and thickness of the space layer ( aluminium layer or alumina layer ) was studied .

  11. 发现IO声子的色散关系和电子-IO声子耦合强度是波矢的复杂函数,并且长波声子是主要的。

    It is found that the dispersion relations of IO phonons and the electron interface phonon coupling functions are complicated functions of wave vector and that the phonons with long wavelengths are important .

  12. 该传感器可实现1km的测量范围,对应力作用点的空间位置测试精度可达到mm量级,对偏振模耦合强度测试可达到-80dB的灵敏度。

    The measurement range is 1 km . The spatial resolution of the stress is on the order of millimeters . And the sensitivity of polarization mode coupling is approximately - 80 dB .

  13. 以Gray-Scott时空混沌系统作为网络节点为例,模拟仿真小世界网络中所有节点动力学系统的最大Lyapunov指数随耦合强度的演化规律。

    Gray-Scott spatiotemporal chaos systems are taken as network nodes , simulation in the evolution of the largest Lyapunov index with the coupling strength in small-world network is made .

  14. Goodwin模型的数值模拟以及对相振子模型的解析发现自振荡周期是与耦合强度的离散程度呈反比的。

    The numerical results from Goodwin model and the analytical results from phase model show that the free running period is in contrast to the dispersion of coupling strength .

  15. 但我们利用著名的LaSalle不变原理,证明了只要自适应耦合强度系数为正数,这种自适应耦合的复杂动力网络就可以达到同步。

    However we proved by using the well-known LaSalle invariance principle , that the state of such a complex network can synchronize as long as the coupling strength coefficient is positive .

  16. MSF借助对网络的拉普拉斯矩阵的特征值计算和对网络稳定性边界条件的分析来确定使网络达到稳定同步态必须满足的耦合强度的范围。

    MSF determines the scope of coupling strength that ensures the stable synchronization of networks , by calculating the eigenvalues of network coupling Laplace matrix and analyzing threshold conditions of stability of networks .

  17. 结果表明:在互耦VCSELs系统中,耦合强度以及两激光器间的频率失谐是影响混沌延时特征的关键因素。

    The results show that , in the mutually coupled VCSELs system , the coupling strength and the frequency detuning between the two mutually coupled VCSELs are the crucial factors for TDS suppression .

  18. 结果表明:Alfven波存在比较宽的激发区域,耦合强度随等离子体电流、纵向磁场的上升而增强。

    The results show that there is a quite broad excitation region for shear Alfven waves , the wave energy coupling indicated by the antenna loadings increase as the plasma current and toroidal magnetic field increase .

  19. 整体磁滞回线和局部磁滞回线的测量结果表明,上下两层Co/Pt多层膜之间的铁磁性耦合强度随着Pt中间层厚度的增加单调减小,当Pt中间层厚度超过4nm时铁磁性耦合消失。

    The measured results of major and minor hysteresis loops show that the ferromagnetic coupling between the top and bottom Co / Pt multilayer decreases monotonously with the increase of Pt layer thickness and disappears as the Pt layer thickness over 4 ? nm .

  20. 研究发现,通过调节两个激发态的能级分裂宽度(即量子阱的耦合强度)、Fano型干涉和频率失谐,光学双稳态得到有效控制。

    We show that OB can be controlled efficiently by tuning the energy splitting of the two excited states ( the coupling strength of the tunnelling ), the Fano-type interference , and the frequency detuning .

  21. Kerr效应和偶极偶极相互作用的影响使光场的二阶相干度时间演化曲线呈现周期性的崩塌回复现象,但不论耦合强度如何,光子总是呈现聚束效应。

    The periodical collapse-revival phenomenon of the time evolution of the second-order coherence degree of the field appears , which is caused by the influence of the Kerr effect and the dipole-dipole interaction between atoms . No matter how large are the coupling constants , the photon bunching always appears .

  22. 大调制度中间段两波耦合强度特性的理论分析

    Analysis of two-wave coupling intensity at the intermediate regime with deep modulation

  23. 并且耦合强度对网络的同步有一定的影响;

    We also find that coupled strength has a great effect on synchronization .

  24. 特别地指出该复杂网络的同步完全由耦合强度决定。

    Particularly , the complex network synchronization is determined by coupling strength completely .

  25. 研究了腔场间的耦合强度变化对纠缠特性的影响。

    The influences of cavity-cavity coupling coefficient on the entanglement is also investigated .

  26. 普遍认为突触效能是由神经元之间活动依赖性耦合强度的变化调制的。

    Synaptic efficacy is modified by the variability of active-dependent coupling strength among neurons .

  27. 另外我们考虑了在第四章所讨论的耦合强度离散。

    Additionally , we discuss the dispersion of coupling strength as in Chapter 4 .

  28. 临界耦合强度和连接度之间的定性关系接近于S型曲线,随着连接度的增大,临界耦合强度也越大。

    The relationship between critical coupling intensity and linked degree closes to sigmoid curve .

  29. 声子峰的高度随着电声子耦合强度的变化而变化,并且反应敏感。

    Moreover , the height of phonon peaks is sensitive to the electron-phonon coupling .

  30. 铁电性的转变与不同层间的耦合强度的变化规律不相符。

    Evolution of ferroelectricity does not follow the variation in coupling strength between different layers .