直接消耗系数矩阵
- 网络direct consumption coefficient matrix
-
利用RAS法和正特征矢量法,根据实际经济意义,从理论上给出逆向调整直接消耗系数矩阵的一种方法,可以节省大量的人力物力,并能对宏观经济各部门的发展加以分析。
According to actual economic meaning , RAS method and the positive characteristic vector method , this paper gives a technique to adjust direct consumption coefficient matrix in inverse way . This technique can save lots of financial resources and analyze economy sectors development .
-
直接消耗系数矩阵的性质和应用
The Properties and Applications of Direct Consumption Coefficient Matrix
-
应用RAS方法调整直接消耗系数矩阵,通过预测最终需求,编制出2010年京津冀产业发展投入产出预测模型。
By means of RAS approach , by estimating ultimate demand , predicted model of 2010 Beijing-Tianjin-Hebei Input-Output .
-
该模型主要包括平衡方程组、直接消耗系数矩阵和完全消耗系数矩阵,以及从U、V表到纯表的推导。
The mathematical models mainly consist of balancing equation groups , direct-consumption coefficient matrices and complete-consumption coefficient matrices besides the derivation from U 、 V tables to pure tables .
-
同时在Leontief模型中引入马尔可夫过程,递推预测直接消耗系数矩阵A。
In Leontief model , Markov processes are applied that forecast direct consumable coefficient matrix A.
-
该方法首先对于直接消耗系数矩阵A按变化类型的不同分块,然后对于每块分别应用RAS法。
In the procedure , the direct expense coefficient matrices A are first separated according to different types of changes into blocks , and RAS is applied to each block .
-
直接消耗系数矩阵的极限特征
The limit characteristic of direct consumption coefficient matrix
-
宏观经济模型直接消耗系数矩阵的极限讨论
The Investigation on the Limit of Direct Consumption Coefficient Matrix in the Macroeconomic Model
-
本文给出投入产出技术中直接消耗系数矩阵的性质,以及它在多部门宏观经济中的应用。
This paper gives the properties and applications of direct consumption coefficient matrix in multi-sector macroeconomics .
-
对如何以投入产出模型和简单的投入产出乘数为基础,计算和分析居民部门诱发的投入产出乘数问题作了探讨,提出了以扩展直接消耗系数矩阵计算居民部门诱发乘数的方法。
This paper discusses how to calculate and analyze the input-output multipliers induced by the resident section , when applying input-output and simple input-output multiplier method , and gives a way to calculate multipliers induced by the resident section with extended direct consumption coefficient matrix .
-
我们先对已有的成果作了简要的介绍和总结,而后我们讨论了当直接消耗系数矩阵为某些特殊矩阵时,投入产出模型的系数矩阵所具有的特殊性质。
At first , some basic properties of the input-output matrices are listed and a brief introduction to some wonderful results done by former researchers is given . After that we mainly discuss the properties of input-output matrices when the direct consumption matrix A is in some special kinds .
-
如果A还是一个箭形矩阵的话,我们对A,B的特征值有很直接的估计。并且,若直接消耗系数矩阵A为对称箭形矩阵,我们给出了判断其是否正定的简单方法。
Moreover , if A is a symmetric arrow-like matrix we have a more direct estimation for the eigenvalues of A and B. Thus a simple way to judge whether A is positive definite or not under this circumstance is presented .