数学猜想

  • 网络conjecture
数学猜想数学猜想
  1. 数学猜想及其对数学发展的影响

    Mathematical conjecture and its ′ influnce on development of mathematics

  2. 支持数学猜想;

    To support mathematical conjecture .

  3. 培养学生数学猜想能力的教学设计

    The Teaching Design of Cultivating students ' Supposing Ability in Mathematics

  4. 数学猜想功能的初步探讨

    Tentatively Approaching the Guessing Function of Mathematics

  5. 数学猜想教学探讨

    Thoughts on the Teaching of Mathematical Guess

  6. 本文主要从思维素质培养、思维方法训练、猜想能力开发、特别是数学猜想证明等角度对如何全面、系统、科学、有效培养具有较高素质的高等院校学生进行探讨。

    This paper analyzes how to develop thinking diathesis and thinking methods of mathematical guess , etc.

  7. 数学猜想法

    The guessing method in Mathematics

  8. 数学猜想与数学探究学习、合情推理、创新能力、归纳能力有着紧密的联系。

    Mathematics conjecture has close contact with mathematics inquiry learning and reasonable inference , innovation ability , conclusive ability .

  9. 数学猜想能力是一种综合程度很高的数学能力,具有科学性、假定性、多样性、验证性、创新性。

    Mathematics conjecture ability is a highly integrated ability , scientific , presumptive , diversity , verification , and innovative .

  10. 文章采用史学分析方法全面探讨了数学猜想的特点、类型,提出方法及解决方法。

    Using method of historical analysis , the paper analysed mathematical conjecture ' character , category , posing and solving methods .

  11. 数学猜想需要具备丰富的知识储备,完善的认知结构和图式,并经历特定的思维过程。

    Mathematics conjecture requires with extensive knowledge of mathematics , perfect mathematics cognitive structure and schema and think through a specific process .

  12. 数学猜想作为一种数学想象,是人的思维在探索数学规律、本质时的一种策略。

    As a kind of mathematical imagination , mathematical guess is a strategy when people explore law and the essence of mathematics .

  13. 数学猜想教学研究是提高学生思维分析能力的重要措施。

    A deep study of the teaching of mathematical guess is the important measures which will improve the maths abilities of the students .

  14. 从自然辩证法的角度分析了数学猜想的形成、特征及其在数学事业发展中的地位,展示了一种加强素质教育的好方法。

    This paper analyses mathematic guess s formation characteristics and its position in mathematic cause from natural dialectic point of view . It is a good method of enhancing quality education .

  15. 为了更准确地了解学生的数学猜想能力,在参考数学猜想的各种界定的基础上,确定本文的数学猜想为问题解决中的数学猜想。

    In order to accurately know the students mathematics conjecture ability , on basis of thinking of a variety of definition , I identify as mathematics conjecture on solving mathematics problems .

  16. 然而,大多数弦理论模式都是基于确定的数学猜想,我们所需要说明的东西就是此类弦理论有一些明确的预测可以检测到。

    However , most string theory models are based upon certain mathematical assumptions , and what we ve shown is that such string theories have some definite predictions that can be tested .

  17. 提出了培养学生数学猜想能力的教学设计框图;结合数学教学实例,对教学设计框图中所涉及的教学环节进行了详尽的、具体的分析。

    In this paper , the diagram of teaching design for training student ′ s mathematical guess ability has been proposed and the detailed teaching steps has been discussed based on the teaching practice .

  18. 从学科教学的角度,结合教育教学的实践,探索了数学猜想的一些教学途径,试图通过猜想教学将培养学生创新意识落到实处。

    From the angle of academics teaching and with the practice of teaching , the author will explore some ways of mathematics guess in teaching and try to realize the development of students ' innovation by mathematics guess .

  19. 文章用实例论述了数学概念、猜想和证明的生成性教学的基本方法。

    In this paper , the essential methods of production teaching about the concept , suspicion and proof of mathematics were discussed through examples .

  20. 基于第三类极限数学理论的Goldbach猜想和Fermat猜想的同时证明

    Simultaneous verification of Goldbach conjecture and Fermat conjecture on the mathematical theory of the third type of limit

  21. 余新河数学题与哥德巴赫猜想

    Yu Xinhe 's Mathematical Questions and Goldbach 's Conjecture

  22. 数学分析教学中学生猜想能力的培养

    Cultivating capacity for students ' plausible reasoning ( or guessing ) in mathematical analysis teaching

  23. 利用数论函数(ω),证明了余新河数学题和哥德巴赫猜想。

    The Yu math problem and Goldbach conjecture are proved using the arithmetic function (ω) .

  24. “陈氏定理”,即陈景润攻克世界著名数学难题“哥德巴赫猜想”中的(1十2)的结果,在数学界居世界领先地位。

    His Chen 's Theorem , the research results of his study of the Goldbach 's Conjecture in the field of the analytic theory of numbers , has a leading position among international mathematicians .

  25. 数学全息元与数学猜想

    From Mathematical Holographic Unit to Mathematical Conjecture

  26. 数学理论的胚胎&数学猜想

    The Embryo of Mathematics Theory & Mathematics Suppose

  27. 让学生经历类似数学家的数学活动过程&数学的猜想、合情推理、(试误)探究、检验、证明等,并不断重组新的常识或经验,学习所教主题的数学本质。

    Let students master the essence of mathematics what taught by teachers , through the quasi-mathematician activities & mathematical supposing , rational reasoning , ( error-trial ) exploring , validating , proving et al , and reorganize students ' new common sense and experience .

  28. 理论思维方法与数学事业的发展&从数学猜想谈起

    Theoretic thought method and development of mathematic cause-talk from mathematic guess

  29. 对余新河数学题进行了研究,论证了余猜想&余新河数学题与哥德巴赫猜想的关系,给出了有关定理,得出了相应的结论。

    This paper deals with Yu Xinhe 's mathematical questions , demonstrates the relations between Yu 's and Goldbach 's conjectures and gives relevant theorems and corresponding conclusions .

  30. 其次,就培养数学创造性思维的途径,提出八点建议,例如:鼓励进行数学推广,数学猜想,数学反驳,数学想像等等。

    Then , eight pieces suggestions are given in how to cultivate creativity in mathematics , such as encouraging in mathematical spread , mathematical conjecture , mathematical argument , mathematical image , etc.