开普勒轨道
- 网络Keplerian orbit;NKO
-
导航卫星一般采用近圆轨道,当卫星轨道偏心率或者轨道倾角接近于零时,利用GPS卫星开普勒轨道根数拟合卫星广播星历会出现一些问题。
When their orbit eccentricity or inclination are near zero , some problems may occur when the GPS Kepler orbit elements fitting method is applied to fit their broadcast ephemeris parameters .
-
随着开普勒轨道天文台的继续扫描,数据与分析(例如Traub文件)将会继续变得更加准确。
As Kepler continues to scan , data - and analyses such as Traub 's paper - will continue to become more accurate .
-
空间非开普勒轨道分析与控制中的数学问题
Mathematical Problems in the Analysis and Control of Spatial Non-Keplerian Orbits
-
航天器开普勒轨道和非开普勒轨道的定义、分类及控制
Spacecraft Keplerian Orbits and Non-Keplerian Orbits : Definition , Classification and Control
-
随着一项简单的任务,寻找其他地球,开普勒轨道天文台启动。
The Kepler orbiting observatory was launched with a simple mission - to find other Earths .
-
这项分析暗示,或许有比从前预想的更多的潜在地球在进行着轨道运动,这一原则将会拓展到还没被开普勒轨道天文台扫描到的地区。
Traub 's analysis hints that there may be even more potential ' Earths ' orbiting them than previously thought - and that this ' principle ' would extend to stars not yet scanned by Kepler .
-
针对椭圆轨道上空间飞行器的编队飞行,基于开普勒轨道方程推导了一组新的相对运动方程,该方程组采用轨道要素表示,可直接用于编队的轨道设计。
Based on the Kepler 's equation , a new set of relative motion equations with elliptical reference orbits were derived . The equations are expressed by orbit elements , and can be used directly for formation flying orbit design .
-
在此基础上定义相干态,并证明力学量坐标和动量对相干态的平均,给出经典开普勒运动轨道。
The coherent states are defined , for which the expectation values of the position and the momentum are shown to give the classical Kepler orbits .
-
开普勒发现地球的轨道是椭圆形,太阳正好处于椭圆的两个焦点之一。
As Kepler showed , the Earths orbit is an ellipse , with the sun at one of the two focal points .
-
接着,开普勒又证明椭圆轨道模型同样适用于解释其他行星的运行轨迹,并且依此模型足以归纳出行星运行定律,而这些定律日后成为了牛顿的理论基础。
Kepler went on to show that an elliptical orbit is sufficient to explain the movement of the other planets and to devise the laws of planetary motion that Newton built on .