发射结

  • 网络emitter junction;B-E;emitter
发射结发射结
  1. 测试三极管发射结压降对判断管子工作状态是否正常及管子是否损坏是很有用的。

    It is very useful to judge whether operating mode of a transistor is normal or damaged by testing the emitter junction voltage of the transistor .

  2. 晶体管发射结软击穿对多谐振荡器的影响

    The effects on a multivibrator caused by soft-breakdown oof the transistor emitter junction

  3. 同时,pn结和n-n+界面之间的温度由于电场强度的增大而逐渐升高,器件内部最高温度仍在发射结柱面处。

    Meanwhile , the temperature elevation occurs in the area between the pn junction and the n-n + interface due to the increase of the electric field .

  4. 经计算机模拟分析,求得了h(FE)随时间的漂移曲线以及温度、发射结偏压、基区表面势对这种漂移的影响。

    As a result of the computer simulation , the drift curve of hFE with time and the effects of temperature , emitter bias voltage , and base surface potential on the curve are given .

  5. 同时利用PNP晶体管发射结电压的负温度特性和发射结差值电压的正温度特性设计了一个带隙基准电压源。

    According to negative temperature coefficient of VBE and positive temperature coefficient of VT , a framework of band-gap voltage reference is investigated .

  6. 对于新型N ̄+IP发射结结构的微波功率管,采用一维数值模拟,分区计算了它的渡越时间,结果表明其截止频率的小电流特性可以获得明显的改善。

    The transit times in the silicon microwave power transistors with the novel structure of N + IP emitter are regionally calculated by one-dimensional numerical simulation . The results indicate that its low current characteristics of the cut-off frequency f_T can be obviously improved .

  7. 得到了SEB灵敏度与载流子浓度、基区宽度和发射结掺杂浓度等参数的变化关系。提出了改善SEB的几种加固措施。

    The effects of the minority carrier lifetime in the base , the base width and the emitter doping concentration on SEB susceptibility are verified .

  8. 从模拟和实验两方面研究了SiGe/SiHBT发射结中pn结界面和SiGe/Si界面的相对位置对器件的电流增益和频率特性的影响。

    The effects of the relative position between the interfaces of pn junction ( emitter base ) and SiGe / Si on the current gain and frequency performance of SiGe / Si HBT are investigated by simulation and experiment .

  9. 晶体管发射结正向电容的测量及分析

    Measurement and Analysis of the Forward - biased Emitter-base Capacitance

  10. 功率晶体管发射结注入电流密度分布

    Distribution of Emitter - Current Density in power Transistors

  11. 测试发射结压降&检修和调试电路的有用手段

    Testing Voltage of Emitter Junction A Useful Means to Service and Debugging of Circuit

  12. 随着频率的增大,发射结柱面处的电流密度和电场强度逐渐减小。

    The current density and the electric field at the damage position decrease with the increasing frequency .

  13. 本文对多晶硅膜离子注入掺杂和扩散掺杂制备浅发射结进行了实验研究。

    An experimental study has been carried out on the doping of polysilicon by ion implantation and diffusion for the preparation of shallow junctions .

  14. 本文叙述了一种以隧道场感应结作为发射结的新型晶体管。

    In this paper , we have proposed and fabricated a new type of transistor in which the tunnelling field-induced junction is used as an emitter .

  15. 低电压高效率非晶硅发射极异质结UHF功率晶体管

    Low Voltage High Efficient Amorphous-Si Emitter Heterojunction UHF Power Transistors

  16. 一维温度分布曲线给出了整个发射区的结温分布情况,并可直接读取发射区的峰值结温和最低结温,还可以计算出平均结温。

    The junction-temperature distribution of the emitter region of the transistors , peak junction temperature , and minimum junction temperature are briefly shown and the average junction temperature is calculated through the one-dimension temperature distribution curves .

  17. 宽带隙材料作发射区的异质结光晶体管(HPT)的研究

    Study of the Heterogeneous Phototransistor ( HPT ) with a Wide-gap Emitter

  18. 由于FFJ的发射极-基极结电容仅仅取决于它的发射极掺杂情况,因此,可以同时得到较小的基极电阻rb和较高的发射极截止频率f(TE)。

    The emitter-base junction capacitance of the FFJ is only decided by it 's emitter doping profiles , so that both smaller base resistance rb and higher emitter cutoff frequency can simultaneously be obtained .

  19. 在太阳电池制备过程中,发射极(p-n结)的制备是一个非常重要的环节,因此在这个过程中,我们着重研究了磷在硅中的扩散。

    Since the fabrication of emitters ( p-n junctions ) is a very important process in the whole solar cell fabrication processes , phosphorous diffusion in silicon has been extensively investigated .

  20. 非晶态发射极晶体管中发射结电流密度的横向分布

    Lateral Distribution of Emitter Current Density in Amorphous State Emitter Transistor

  21. 利用多晶硅发射极技术与分子束外延生长SiGe基区技术相结合,研制成适于集成的平面结构、发射结面积为3μm×8μm的SiGe异质结双极晶体管(HBT)。

    A planar SiGe heterojunction bipolar transistor was fabricated using polysilicon emitter technology and SiGe base grown by Molecular Beam Epitaxy ( MBE ) .