动量矩守恒
- 网络conservation of moment of momentum
-
动量守恒定律和动量矩守恒定律的正确表述
The Exact Statement of the Law of Conservation of Momentum and the Law of Conservation of Moment of Momentum
-
基于分级Lyapunov方法,讨论了载体姿态与位置均不受控制的滑移铰空间机器人末端运动轨迹的避障碍运动学规划问题.首先以系统动量矩守恒关系及运动。
Based on hierarchical Lyapunov methods , the motion planning of free-flying space robots with prismatic joint for obstacle avoidance is discussed .
-
首先,根据系统结构的几何关系并结合系统对总质心的动量矩守恒关系,导出了其末端抓手运动速度与关节铰速度之间的广义Jacobian关系;
First , combining system geometry and momentum conservation equation , the generalized Jacobian matrix for the space manipulator is derived ;
-
利用动量矩守恒原理导出带太阳阵航天器的动力方程,指出了系统的非完整约束性质。
The equation of a spacecraft with solar arrays are obtained by using the conservation principle of momentum .
-
推导了漂浮多体系统动量矩守恒方程及动力学方程。
The nonholonomic constrain equation and dynamical control equations of a floating multibody system are derived in this paper .
-
考虑动量矩守恒具有非完整约束性质,建立了考虑控制力矩作用的非完整动力学方程。
Considering the nonholonomic constraints of conservation equations for moment of momentum , Lagrange equations with multiplier are established .
-
由于动量矩守恒方程不可积分,系统的运动为受非完整约束的运动。
Thus , system motion is constrained by nonholonomic constrain because of the non-integrability of angle momentum conservation equation .
-
根据动量矩守恒和力平衡方程得到一代数方程,用于求解系统展开及剪断后的轨道参数。
According to the moment of momentum conservation and force-balance , the algebraic equation is obtained to seek the solution of the orbital parameters of the system after deployment and cut-off .
-
在运动生物力学和体育统计中,有许多物理学及数学的概念和原理,例如自由度、动量矩守恒原理、概率密度函数、小概率事件原理等。
In sports biomechanics and physical statistics there are many concepts and principles dealing with physics and mathematics such as free degree , principle of conservation of angular momentum , probability density function , principle of little probability event .
-
该方法以系统动量和动量矩守恒关系为基础,建立了控制系统设计所需系统状态方程;
With the linear and angular momentum conversation , the state equation is established for the system control design .
-
对系统运动学、动力学的分析结果表明,结合系统动量守恒及动量矩守恒关系得到的系统广义Jacobi关系以及系统的动力学方程是系统惯性参数的非线性函数。
It is shown that the Jacobi matrix and the dynamic equations of the system are nonlinearly dependent on inertial parameters .