雅可比行列式

  • 网络Jacobian determinant
雅可比行列式雅可比行列式
  1. 一个n阶雅可比行列式的值

    The Value of An N - Order Jacobian Determinant

  2. 使用雅可比行列式的立体像对校正方法

    A New Method of Image Rectification Using Jacobian Determinant

  3. 雅可比行列式及其在热力学中的应用

    Jacobian Determinant and Its Application to Thermodynamics

  4. 本文着重讨论运用雅可比行列式推导热力学关系式的技巧问题。

    By using Jacobian determinant , the relations of state functions of thermodynamics and the problem solving skills are discussed .

  5. 事实上,皮雅杰对于人工智能和思维之信息处理模式的贡献,比其倡导者可能认识到的更多。负的(无效的)雅可比行列式,说明网格设置有问题。

    Indeed , artificial intelligence and the information-processing model of the mind owe more to Piaget than their proponents may realize .

  6. 本文根据雅可比行列式的性质,利用矩阵分析的方法,得到热力学中物理量之间的麦克斯韦关系,同时给出一种容易记忆的方法。

    The Maxwell relations between the thermodynamic functions were derived with the matrix analysis according to the characteristics of Jacobian determinant in present paper .

  7. 本文应用的第二个方法伪逆矩阵法是基于雅可比行列式。雅可比行列式是出一系列关于系统特征多项式系数和输出反馈元素的非线性方程式得到的。

    The second approach , namely the pseudo-inverse method , is based on a Jacobian matrix that is derived from a set of nonlinear equations relating the coefficients of the systems characteristic polynomial to the output feedback elements .

  8. 含SVC和TCSC电力系统小干扰电压稳定性的雅可比矩阵行列式符号比较法

    Small-signal Voltage Stability Analysis in Power System with SVC and TCSC by Comparing Two Determinants of Jacobian Matrices

  9. 建立了基于六面体单元雅可比矩阵行列式的值和条件数的网格质量评价准则。

    On the base of the determinant and condition number of Jacobian matrix , the quality metrics of hexahedral element mesh were constructed .

  10. 建立了六面体单元最小雅可比矩阵行列式值的网格质量评价准则,将六面体网格的质量进行量化,使网格质量的检测更加简便和精确。

    The quality metric was constructed based on the minimal determinant value of Jacobian matrix , which quantified the quality of hexahedral meshes and made the evaluation of mesh quality easier and more accurate .

  11. 研究机器人处于非奇异位姿即逆雅可比矩阵行列式不接近零时,位姿变化对机器人精度的影响。

    The effects of posture changes on the accuracy of robot have been studied when the robot is in non-singular posture , namely the determinant of inverse Jacobi matrix is not close to zero .

  12. 将这些分支的运动领域映射在数轴上,用雅可比矩阵的系数行列式的符号和相应构件角位移的正弦符号来识别。

    Let the motion domains of these branches be mapped on number axis , the discrimination can be made by comparing the symbol of coefficient determinant of Jacobian matrix with the sine symbol of angular displacement .