表示论

  • 网络Representation Theory;math.RT
表示论表示论
  1. 集对Fuzzy格及其在格表示论中的应用

    Dual set Fuzzy lattice and its application to representation theory of lattice

  2. quiver在代数表示论中起着非常重要的作用。

    Quivers have played an important role in the representation theory of algebras .

  3. 本文讨论NMR波谱与李代数表示论之间的联系及NMR波谱解析的李代数方法中的基本问题。

    In this paper the relationship between NMR spectra and Lie algebraic representation , the basic problems in Lie algebraic methods for analysing NMR spectra arc discussed .

  4. Jantzen在[Ja]中由Uq(sl2(C))的表示论通过R-矩阵的方法给出了SLq(2)的定义关系式。

    Jantzen gave the defining relations of SL_q ( 2 ) arising from the representations of U_q ( sl_2 ( C )) by the R-matrix .

  5. 李群表示论和Schubert条件

    Representation Theory and Schubert Condition

  6. 群表示论的物理方法(Ⅱ)置换群亚标准基和酉群Gelfand基

    Physical method of group representation theory (ⅱ) the quasi-standard bases of permutation group and the Gelfand bases of unitary group

  7. 本文应用模态综合技术,结合群表示论,对C(NV)群上对称的轮盘-叶片系统提出其基本主模态和亚优势模态的一种有效算法。

    In this paper by using the modal synthesis technique combined with the representative theory of finite group , an efficient analysis method is presented to calculate the dominant and subdominant modes for a coupled system of symmetrically bladed disc with CNV group .

  8. 本文利用群表示论研究李群以及紧致对称空间的热核,特征值与特征函数.特别讨论了复格拉斯曼流形以及流形Sp(n)/U(n)上特征值及特征函数。

    In this paper , we study the heat kernels , eigenvalues and eigenfunctions of Lie groups and compact symmetric spaces by means of the representation theory of groups . Especially , we discuss the complex Grassmannian manifolds and the manifolds Sp ( n ) / U ( n ) .

  9. 1990年,Ringel引入了Ringel-Hall代数,这类代数提供了用表示论来研究李代数和量子群的新途径。

    Ringel introduce a new algebra which is called Ringel-Hall algebra in 1990 . These algebras provide a new approach into the studying for Lie algebra and quantum group .

  10. 群表示论在直积网络中的一个应用

    An application of the group representation theory in direct product network

  11. 群表示论中不可约张量基方法的研究

    A Study of Irreducible Tensor Basis Method in Group Representation Theory

  12. 代数表示论的某些新进展

    Some New Advances in the Representation Theory of Algebras

  13. 代数表示论简介与综述

    An Introduction and Survey on Representation Theory of Algebras

  14. 知识表示论研究

    The Research of Theory of Knowledge Representation

  15. 文中还介绍了群表示论在此领域的应用,这将给从事材料研究的工作者带来很大方便。

    Application of the theorem of representation of groups to this field is also presented .

  16. 几乎可裂序列是研究代数表示论的一个有力工具。

    The almost split sequence is an important instrument in research of the representation theory for algebra .

  17. 本文对群表示论中的不可约张量基方法作了进一步的研究。

    In this paper , the irreducible tensor basis method in group representation theory is studied further .

  18. 有限群表示论的新途径(Ⅲ)本征函数法在点群上的应用

    A new approach to the representation theory of finite groups (ⅲ) application of eigenfunction method to point groups

  19. 代数表示论是上世纪七十年代初兴起的代数学的一个新的分支,它的基本内容是研究环与代数的结构。

    Algebra representation theory is a new algebraic branch arising in 1970s whose researches mainly focuses on rings and algebraic structures .

  20. 本文介绍一种完全用量子力学中对易算符集方法处理的有限群表示论。

    This paper advocates a new approach to the theory of finite group representations by applying exclusively the method of commuting operators in quantum mechanics .

  21. 群表示论是泛函分析的另一项重大发展,在核结构、基本粒子理论以及数学其他分支中有广泛应用。

    Functional analysis , group representation theory is another major development in nuclear structure , elementary parti-cle theory and other branches of mathematics have wider application .

  22. 粗糙集理论的关键是建立两个被称为下、上近似的子集来近似表示论域上的任意集合。

    The key of the rough set theory deals with the approximation of an arbitrary subset of a universe by two subsets called lower and upper approximations .

  23. 代数表示论的引入不仅给这些领域的研究带来了新的观点和方法,同时也得到了一些新的代数。

    Not only the application of the representation theory provides new insight and approach into these areas , but also gets many new algebras in the same time .

  24. 因而模的包络、复盖理论在环模理论、同调代数和代数表示论中都有着非常重要的作用。

    The theory of envelopes and covers takes an important part in theory of rings and modules , homological algebra , representation theory of algebras and so on .

  25. 代数表示论主要研究有限维代数的结构、不可分解表示和模范畴的构造。

    Representation Theory of Artin Algebras is a subject in which one mostly studies structures of finite dimension algebras , indecomposable representations and global construction of module categories .

  26. 根据群表示论的基本定理,对相对论量子力学中狄拉克矩阵维数的唯一性给出直接证明。

    According to the fundamental theory of group representations , a direct proof is given for the singleness of demension of Dirac 's matrix in the relativistic quantum mechanics .

  27. 单连通的概念来源于拓扑学,此外在分析等学科中也有相应的概念,引入表示论中后又被赋予新的意义。

    The notion of simple connectedness came from topology , and the corresponding ones also appear in some subjects such as Analysis . It was given new meaning when introduced in the representation theory .

  28. 利用编码理论,群表示论以及可迁群作用中的一些基本知识,我们得到当一个群可迁的作用在一个集合上时,自对偶置换码存在和不存在的几个条件。

    With the elementary knowledge of coding , group representation and group action , we get some existent and un-existent conditions on the existence of self-dual permutation codes in the case that the group action is transitive .

  29. 代数表示论则是兴起于二十世纪七十年代的一个重要数学分支,主要研究有限维代数的结构,不可分解表示和模范畴的构造。

    As an important branch of mathematics , the theory of representation of algebras was developed in the seventies of the twentieth century and mainly studies the structure of finite-dimensional algebra , indecomposable representation and the construction of module category .

  30. 根据商群的π-块理论,用π-块论条件刻画几类π-可分群,推广了一些p-可解群上的模表示论结果。

    Based on research of π - block in a quotient group , we characterize some π - separable groups using some related sufficient conditions of a π - block , which extend the related results in modular representation theory of p-solvable groups .