色数

sè shù
  • chromatic number
色数色数
色数[sè shù]
  1. 图的路色数问题的NP-完全性

    The NP-completeness of The Path Chromatic Number Problem of Graphs

  2. Cm·Fn的邻点可区别边色数

    On Adjacent Vertex - distinguishing Edge Chromatic Number of C_m · F_n

  3. Cm·Pn图的邻强边色数

    On the Adjacent Strong Edge Coloring of C_m · P_n

  4. P4-free平面图的路色数

    Path Chromatic Numbers of P_4-Free Planar Graphs

  5. Pm∨Pn和T(n,2)的点可区别的边色数(英文)

    Vertex-distinguishing edge chromatic number of P_m ∨ P_n and T_ ( n , 2 )

  6. 本文证明了P4-free2-连通平面图的路色数为2。

    This paper shows that the path chromatic number of any P_4-free 2-connected planar graph is 2 .

  7. 图K(r,2)的邻强边色数(英文)

    On the adjacent strong edge chromatic number of k ( r , 2 )

  8. 关于图GΔ的圈秩较小时的边色数分类

    On the chromatic index of graphs when the cycle rank of g_ δ is small

  9. 用χ′(as)(G)表示图的邻强边色数。

    The adjacent strong chromatic number is denoted by x_ ( as ) ' ( G ) .

  10. 的2-有向路色数,x(G~2)表示图G的平方色数。

    Let x ( G ~ 2 ) denote the chromatic number of square of a graph G.

  11. 对一个图G进行邻强边染色所需要的最少的颜色数称为是G的邻强边色数。

    The minimum number required for an adjacent-strong edge coloring of G is called the adjacent strong edge chromatic number .

  12. 一个图当它的圆色数和分色数相等称之为starextremal。

    A graph is called star extremal if its fractional chromatic number is equal to its circular chromatic number .

  13. 能对图G进行,f-边覆盖k-边染色的最大颜色数k,称为图G的,f-边覆盖色数,记为X'fc(G)。

    The f-edge cover chromatic index of G , denoted by X'fc ( G ), is the maximum k such that an f-edge cover k-edge coloring exists .

  14. 本文给出了每部有2个点的完全r-部图(r≥2)的邻强边色数。

    In this paper , we obtain the adjacent strong edge chromatic number of complete r-partite Graph ( r ≥ 2 ) having two vertices on each partition .

  15. 给出了完全图K6的广义图K(6,n)的一种正常边着色法,从而解决了这类图的边色数。

    In this paper , a proper colouring method for K ( 6 , n ) is given which solves the edge-chromatic number .

  16. 对于任意给定的k,2≤k≤∞,平面图的(k,3)路色数问题也是NP-完全的。

    For any given integer k , 2 ≤ k ≤∞ . the ( k , 3 ) path chromatic number problem for planar graphs is also NP-complete .

  17. 研究了Pm∨Pn的点可区别边染色,并得到了Pm∨Pn的点可区别边色数。

    We studied the vertex-distinguishing edge coloring of Pm ∨ Pn , and got the vertex-distinguishing edge chromatic number of Pm ∨ Pn .

  18. 研究了简单图G(V,E)的强色数χs(G)的上界与极图及χs(G)与全色数χT(G)的关系;

    The upper boundary and the extremal graph properties of the strong chromatic number χ s ( G ) of a simple graph G ( V , E ) are studied .

  19. 关于边色数GOLDBERG问题的注记

    A note of Goldberg problem of edge chromatic number of a graph

  20. 介绍了一种新的图着色&关于图G的对策色数和对策色数χg(G)。

    To introduce a new coloring of a graph , the definition of the game coloring ⅱ of graph G and the chromatic number χ g ( G ) of a graph are given .

  21. 扇与Halin图的一致膨胀图的关联色数

    Incidence Chromatic Number of Uniform Inflations of Fans and Halin Graphs

  22. 图G的圆色数,记作Xc(G),是最小的有理数k/d使得图G存在一个k/d圆着色。

    The circular chromatic number of G , denoted by X_c ( G ), is the least rational number k / d such that there is a k / d-circular coloring of G.

  23. 关于Halin图的色数问题

    On the Chromatic Numbers of Halin Graphs

  24. Halin图的1-色数

    On the 1-chromatic number of Halin graphs

  25. 对几种特殊图类进行了讨论,分别确定链图,圈图及与圈有关的图,扇图,Petersen图的边对策色数。

    It is also determines the edge game chromatic numbers of cycle and petersen gragh and some other graphs .

  26. 关于图G-v,G-e和W(2n+1)的星色数

    On the Star Chromatic Numbers of Graphs G-v , G-e and W 2n + 1

  27. 通过研究3-正则Halin图的结构性质,确定了3-正则Halin图的关联色数。

    The incidence chromatic number of 3-regular Halin graphs is determined by studying its structural property .

  28. 当T的最大度点相邻时,它们的邻强边色数均为Δ(T)+m+1.其中T为n(n≥3)阶树图。

    When T has two vertices of maximum degree which are adjacent , the adjacent strong edge chromatic number of these product graphs are all Δ( T ) + m + 1 . T is tree graph with n ( n ≥ 3 ) order .

  29. 由Vince引进的图的星色数的概念,是图的色数的一个自然推广。

    The concept of the planimetric map ′ s star color figure derived from Vince is a natural popularization of the map ′ s figure .

  30. 通过巧妙的构图,用图论的方法,完全确定了循环图Cn<1,k>和Cn<1,k,n/2>的边色数。

    In this paper , the edge-chromatics of C n < 1 , k > and C n < 1 , k , n / 2 > are completely determined by ingenious construction of graph with the methods of graph theory .