线性泛函
- 网络linear functional
-
Fuzzy线性泛函的连续性与Hahn-Banach定理的Fuzzy推广
Continuity of fuzzy linear functional and fuzzy generalization of Hahn-Banach theorem
-
在具有可列基的Banach空间的基上取确定值的有界线性泛函存在的充要条件
Necessary and sufficient condition in which bounded linear functional exists enjoying definite value at basis on Banach space enjoying countable base
-
线性泛函意义下的n阶行列式定义
Definition of n-rank determinant in a sense of linear functional
-
再生核H0~1[a,b]空间中线性泛函的最佳逼近
Best Approaching of Linear Functional in Reproducing Kernel H_0 ~ 1 [ a , b ] Space
-
W2~m空间中样条插值算子与线性泛函的最佳逼近
Spline interpolating operators and the best approximation of linear functionals in w_2 ~ m spaces
-
连续线性泛函的核是Chebyshev的特征
Characterizations for the kernel of a Continuous Linear Functional to Be Chebyshev
-
由于使用了硬的线性泛函约束,SF响应总可以控制在允许的误差范围之内。
Because of the hard constraints , the response of the spatial filters can be controlled in the allowable errors .
-
在一定条件下,凸集A的元素x是A的严有效点的充分必要条件是有正线性泛函f(x)在A上取得最小值。
On the certain condition , the element x of the convex set A is the strictly efficient point if and only if a positive linear functional which can obtain a minimal value on A exists .
-
二重序列空间是一类重要的Banach序列空间,而这类空间的连续线性泛函的表示还没有完全清楚。
Double sequence space is a kind of important Banach sequence space , but the expression of this kind of spaces ' continuous linear functional is not completely clear .
-
线性泛函Riesz表现定理之一种形式及拟转移函数的半群算子、无穷小算子
A Form of Riesz Representation of Linear Functionals And The Semi-groups , Infinitesimal Operators of the Markov Pseudo-transition Functions
-
线性泛函的广义Sard逼近
Extended SARD approximation of linear functional
-
基本思想是使用线性泛函不等式约束在感兴趣的空域范围内保证SF响应的平坦性,同时使输出噪声功率最小化。
The method is to minimize the array noise power subject to the linear functional inequality constraints , which ensure the flat response of the spatial filters in the interest of spatial sector .
-
首先,建立了Banach空间中两个元素的Birkhoff正交性和线性泛函的关系,然后以线性泛函为主要工具,讨论了Birkhoff正交性和Banach空间结构的关系。
First , we give the relation of Birkhoff orthogonality and functionals in Banach space , then use functionals as a tool to investigate the relations of Birkhoff orthogonality and underling Banach space .
-
本文首次在多项式空间上引入了一种线性泛函,从而定义了一种函数值Padé-型逼近(FPTA),并将它应用于求解第二类Fredholm积分方程。
The function-valued Pad é - type approximant is defined by using introducing a function-valued linear functional on polynomial space , then it is applied to solve the second kind of Fredholm integral equations .
-
本文主要是针对多元正交多项式的公共零点和再生核,以及单位球面Sd-1上正交多项式的一些研究工作。主要工作如下:(1)考虑Gauss-型线性泛函下多元正交多项式的公共零点。
This dissertation is to discuss mainly the common zeros and the reproducing kernels of multivariate orthogonal polynomials , and the orthogonal polynomials on the unit sphere Sd-1 . ( 1 ) We consider the common zeros of multivariate orthogonal polynomials under the Gauss-type case .
-
线性泛函序列的收敛和相应的特征超平面序列的收敛
On Convergence of Linear Functionals and Convergence of Corresponding Characteristic Hyperplanes
-
线性泛函在正定二次型下的范数
Norm of a Linear Functional for a Positive Definite Quadratic Form
-
C&型概率内积空间的线性泛函与线性算子理论
On the theory of linear operators of probabilistic inner product C-space
-
关于端单调线性泛函的扩张和存在性
On the extension and existence of extremal monotonic linear functionals
-
H~(1/2)空间上的有界线性泛函
Bounded linear functionals on h ~ ( 1 / 2 ) space
-
线性泛函微分方程解的渐近表示
Asymptotic Representation of Solutions of Linear Functional Differential Equations
-
n-赋范空间与有界n-线性泛函
N normed space and bounded n - linear functional
-
不定度规空间上的线性泛函表示
The Indication of Linear Function In the Uncertainty Space
-
用线性泛函表达两个凸集距离的一些公式
Some formulae on the distance of two convex sets represented by linear functionals
-
它可以推广到Gauss-型线性泛函的多元情形。
It can also be extended to the multivariate case under the Gauss-type condition .
-
拓扑代数的谱与乘法线性泛函
The spectrum and multiplicative functions on topological algebras
-
概率赋范空间连续线性泛函延拓定理的一个证明
A proof of extension theorem of continuous liner functional on the probabilistic normed space
-
线性泛函微分方程的扰动定理
Perturbation Theorems for Linear Functional Differential Equations
-
关于线性泛函一个扩张定理的证明
On the extensional theorem of linear fuctional
-
线性泛函微分方程关于部分变元稳定性的充要条件
Necessary and Sufficient Conditions for Linear Functional Differential Equations with Respect to Its Partial Variables