算术级数

suàn shù jí shù
  • arithmetic progression/series
算术级数算术级数
  1. 算术级数中模n原根的一种分布性质

    On a Distribution Behaviour of Primitive Root Modulo n in Arithmetical Progression

  2. 细胞动力学研究&Ⅲ.细菌算术级数式生长过程热动力学

    Cell Kinetic Study ─ⅲ . Thermokinetic Study of Bacterial Arithmetic Series Growth

  3. 年数总和法是以固定资产使用年限数为算术级数和的倒数乘以尚可使用年数作为折旧率计提折旧额的一种快速折旧方法,是一种加速折旧模型。

    The annual summation model is the accelerate depreciation model .

  4. 算术级数中的华罗庚五素数平方定理

    Hua 's Five Primes Squares Theorem in Arithmetic Progressions

  5. 证明不存在四个连续的二项系数成算术级数。

    Prove that no four consecutive binomial coefficients can be in arithmetic progression .

  6. 算术级数上小区间中的殆素数

    Short intervals ' almost - primes in Arithmetic Progressions

  7. 算术级数中的指数和估计

    Exponential Sums over Primes in an Arithmetic Progression

  8. 论算术级数中之最小素数

    On the least prime in an arithmetical progression

  9. 生活资料只能按算术级数增长。

    Subsistence only increases in an arithmetic ratio .

  10. 本文运用解析的方法,研究模为算术级数中素数的正规化三次高斯和在单位圆周上的分布。

    In this paper , normalized cubic Gauss sums ' distribution at unit circle is studied by analytical methods .

  11. 本文给出了华罗庚五素数平方定理的算术级数形式,证明了其中一个素数可以取在大模的算术级数中。

    In this paper , we generalize Hua 's five primes squares theorem , and prove that one of the primes can be taken in arithmetic progressions with large moduli .

  12. 关于一种高阶算术几何级数的求和问题

    On a Problem of Summing a Kind of Higher - Order Arithmetic - Geometric Progression

  13. 关于算术等幂级数的进一步研究

    Further researches on arithmetic equal power series

  14. 视力记录视标每增加1行,记录相差0.1,呈算术等差级数排列。

    The record difference was 0.1 with the increase of every line of the sight mark , it showed arithmetic progression arrangement .