监督分类

  • 网络Supervised;supervised classification;Unsupervised
监督分类监督分类
  1. 然后,分别采用最大似然算法和最小距离算法对研究区TM影像进行监督分类,并比较两种算法的分类效果,认为最大似然算法较为准确。

    Comparing the results of supervised classification by maximum likelihood arithmetic and minimum distance arithmetic respectively , we think that the maximum likelihood arithmetic is more accurate .

  2. 因此,本文以ERDASIMAGINE系统为操作平台,对遥感图像的几何校正、图像融合和监督分类做了详细的介绍。

    This paper introduces geometric correction , fusion and supervised classification on remote sensing image in detail on the base of ERDAS IMAGINE operating platform .

  3. 双波段全极化SAR图像非监督分类方法及实验研究

    Unsupervised Classification Methods and Experimental Research of Dual-frequency Fully Polarimetric SAR Images

  4. 针对在线商品评价这类情感特征倾向明显的Web文本分类问题,提出了基于特征分布半监督分类算法。

    A semi-supervised classification using feature distribution is proposed to deal with theon-line goods evaluation text classification problem that has obvious emotion tendency .

  5. 基于全极化SAR非监督分类的迭代分类方法

    The Iteration Classification Method and Experiment Study Based on Unsupervised Classification of Fully Polarimetric SAR Image

  6. 基于H-α和改进C-均值的全极化SAR图像非监督分类

    Unsupervised Classification of Fully Polarimetric SAR Image Using H - α Decomposition and Modified C-Mean Algorithm

  7. 文章提出了一种新的基于遗传策略和模糊ART(AdaptiveResonanceTheory)神经网络的非监督分类方法。

    A new unsupervised classification method using evolutionary strategies and fuzzy ART ( adaptive resonance theory ) neural networks is proposed in this paper .

  8. 实验结果表明,该种分类器能很好地实现对纹理粗糙程度模式的无监督分类,其分类性能要明显好于传统的K均值分类器。

    Experimental results show that this new classifier can realize high quality unsupervised image classification , which outperforms the traditional K means classifier .

  9. 基于多通道Gabor滤波器的纹理图像非监督分类

    Unsupervised Texture Segmentation Via Multi-channel Gabor Filters

  10. 将核l1图方法构造的图矩阵与半监督分类方法结合,构造了基于核l1图的半监督分类算法。

    Combine the kernel l1 , graph with semi-supervised framework to construct the algorithm of kernel l1 , graph based semi-supervised classification .

  11. 本文在全极化合成孔径雷达(SAR)特征分解和最大似然估计(ML)分类的基础上,提出基于全极化SAR极化特征分解及最大似然估计的非监督分类迭代算法。

    Based on the theory of eigen-decomposition of fully polarimetric Synthetic Aperture Radar ( SAR ) and maximum likelihood ( ML ) classifier , an unsupervised iteration classification method is proposed .

  12. 接着详细分析了SAR图像中相干斑的形成机理及其数学描述和统计特性,实现并分析了经典的相干斑抑制算法和基于极化分解的极化SAR非监督分类算法。

    Analysis the SAR image speckle formation mechanism , mathematical description and statistical properties detailedly . Then summarize the classical polarization SAR speckle reduction algorithms and non-supervised classification algorithms based on polarimetric decomposition .

  13. 利用美国陆地卫星的TM图像资料,对山东省桓台县和垦利县TM图像资料进行计算机几何校正和不同的增强处理,以分类和非监督分类两种方法提取耕地信息。

    The TM image materials of Huantai County and Kenli County were emendated geometrically and enhanced differently , and the farm land information was derived by supervised classification and unsupervised classification .

  14. 针对星载SAR图像分类的两个关键问题:分类特征的选取和分类方法的选择,本文提出一种实用的星载SAR图像无监督分类方法。

    A classification method for spaceborne SAR image based on wavelet energy distribution is proposed . After analysis the characters of the SAR image , the spaceborne SAR image is decomposed with stationary wavelet transforms .

  15. 利用1996年和1986年秋季陆地卫星TM数据,将计算机监督分类与非监督分类识别方法结合应用进行草地的解译,改进算法,改善遥感图像的识别精度。

    Grasslands had been revised with the method combined supervised and non-supervised classifications using Landsat data in autumn of 1996 and 1986 . The advanced algorithm was used to improve the accuracy .

  16. 同时应用传统的监督分类方法(最小距离法和SAM法)和非监督分类方法(K-均值法和ISODATA法)进行分类。

    Traditional supervised classification method ( Minimum Distance and Maximum Likelihood ) and unsupervised classification method ( K-Means and ISODATA ) were also used in this paper .

  17. 在用TM遥感图像对土壤类型进行非监督分类的基础上,建立了正向推理与逆向推理相结合的推理机制,对土壤类型进行分类识别决策。

    On the basis of non_supervising classification for soils with TM images , the author discusses the reasoning mechanism by combining the direct inference combined with inverse reasoning for soil classification and recognition decision .

  18. 利用1998年9月28日TM卫星数据,经过数据校正、影像增强和非监督分类等处理,制作卫星影像分类图,建立判读标志;

    Landsat / TM image data was used as data source in the study , and the image data was processed with the support of the methods-geometric correction , spatial enhancement and unsupervised classification .

  19. 从模式识别角度,阐明了Fuzzy综合评判是模式识别中实现有监督分类的一种重要教学方法,亦是应用于高校教师教学质量定量管理的有效手段。

    This paper is from the angle of pattern recognition , have expounded Fuzzy to synthesize judge is a kind of important teaching method that realization has supervised classification in pattern recognition , it is also the effective means that application manages in college teacher teaching quality ration .

  20. 针对多时相ASAR数据,本文对比分析了传统的监督分类法、专家分类法和面向对象法等三种方法对目标地物的识别效果。

    Three methods are compared , including traditional supervised classification , expert classification and object oriented classification .

  21. 本文尝试利用GIS软件对地理数据进行分析和预处理,对考虑先验概率是否提高Bayes监督分类精度这一问题作了探讨。

    Supported by the analysis and advance process to the geographical data using GIS software , the paper discusses the question that whether the accuracy of Bayes supervised classification will be improved considering the influence of the prior probability .

  22. 根据湿地分类原则,采用1988年和2002年两期TM遥感影像,对宝应县湿地进行监督分类,并从总量变化、转移矩阵以及景观空间格局三个方面对宝应县湿地动态变化进行分析。

    Base on the wetland principle of classification , using TM image data in 1988 and 2002 , this paper performs supervised classification of Baoying wetland and analyzes the dynamic change in the past 14 years .

  23. 对于低分辨TM影像图,本文采用监督分类、半自动化水体信息提取以及影像解译后处理等技术手段提取TM影像数据的土地利用信息。

    Because of the low spatial resolution TM remote sensing image , this paper uses the process skill of supervised classification , semi-automatic water extraction and post-processing techniques to extract the land-use information of TM image .

  24. 为了提取正确的生态绿地专题信息,对TM影像进行了波段组合从而完成解译、监督分类,导入GIS软件进行绿地属性信息的提取。

    In order to derive proper vegetation information from TM image data , several bands are stacked so that TM image can be interpreted and supervised in classification as to lead to GIS software effective to extract vegetation information of quality .

  25. RRI法城镇提取精度比最大似然监督分类法和神经网络分类法的精度都要高,三者的总体精度分布为:87.08%,75.83%和79.17%。

    And the overall accuracy of RRI , MLC and ANN were 87.08 % , 75.83 % and 79.17 % , respectively .

  26. 深入讨论了基于H-α分割的Wishart非监督分类方法在农作物分类中的性能;

    The performance of Wishart classification for crops based on H - α segmentation plane is discussed in detail firstly .

  27. 对1999年的Landsat-TM进行非监督分类,得到1999年的植被分布图。

    Direct unsupervised classification is made to 1999 Landsat-TM image , and gets the 1999 vegetation distribution image .

  28. 该文提出了基于PCM算法的遥感图像混合像元分解方法,并用监督分类方法实例说明PCM方法的优越性。

    This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm . The priority of the PCM is illustrated by an actual example in the supervised classification in this paper .

  29. 总体来说,基于知识的专家分类系统总体精度和Kappa系数都比监督分类的结果提高,本试验提高了土地利用分类提取的精度,是一种值得推荐的遥感图像分类方法。

    Generally speaking , knowledge-based expert classification system for the overall accuracy and Kappa coefficient of the results is higher than supervised classification , the test improve the extraction of land use classification accuracy .

  30. 随后使用ISODATA算法对融合后的影像进行初步分类,接着利用监督分类最大似然分类器对初步分类结果再次分类。

    Then using the ISODATA algorithm to a preliminary classification of the image fusion , followed by the use of supervised classification maximum likelihood classifier on the preliminary results re-classification .