电离层误差

  • 网络Ionospheric Error
电离层误差电离层误差
  1. 用于远距离差分GPS的电离层误差分析与补偿

    Analysis and Correction of Ionospheric Time Delay for Differential GPS

  2. 最后把上述多参考站网络电离层误差改正模型应用于VRS技术,对VRS位置的电离层改正数进行实时的模拟和计算。

    Finally the above model is applied in VRS technique to generate the local simulated error correction for the user .

  3. 其他误差源均可以采用相应的改正模型对其进行改正,其中电离层误差对单频单点定位的精度影响最大,应对其进行深入研究。

    Other error sources have the corresponding correction models , in which the ionosphere delay error on the single-frequency single point positioning accuracy is the maximum , it should be carried out in-depth study .

  4. 三频GPS改正电离层折射误差高阶项的方法

    GPS Triple - Frequency Methods of High - Order Ionospheric Refraction Correction

  5. GPS定位与定时中电离层折射误差高阶项的改正方法

    Methods for Correcting Higher-Order Ionospheric Effects on the Positioning and Timing of GPS

  6. 电离层延迟误差是GPS定位中的一项重要误差源。

    In Global Positioning System ( GPS ), one of the major error sources is Ionospheric propogation delay .

  7. 电离层延迟误差产生的原因是由于GPS信号在经过充满自由电子的电离层时,传播路径发生弯曲,速度发生改变,使得实际值不等于真实值。

    The ionosphere delay error is one of the errors , it caused due to the GPS signals path bending and speed changed when go through the ionosphere that full of free electrons .

  8. 在长距离GPS实时动态定位(RTK)过程中,电离层延迟误差是影响定位精度的主要误差源。

    The ionospheric delay error is a major error source which degrades the positioning accuracy in network real time kinematic ( RTK ) positioning over a long distance .

  9. 随着GPS现代化的开始,GPS卫星上开始发射第三个载波频率,这使得通过三频对电离层延迟误差的二阶项修正变成了可能。

    With the beginning of the GPS modernization , the GPS satellites start to launch the third carrier frequency . This step makes the possible of the correction of second-order term of the ionosphere delay error through triple-frequencies .

  10. WAAS电离层延迟误差校正的网格算法

    The Grid-based Algorithms for Ionospheric Correction

  11. 电离层延迟误差是GPS测量中非常重要的一项误差源,也是高动态GPS卫星信号模拟器要解决的一项关键技术。

    The ionospheric time-delay is an important error source for GPS users . How to simulate the ionospheric error is one of the key problems that need to be solved in high dynamic GPS signal simulator design . The ionospheric effects are related to the user 's position .

  12. 线性内插改正模型和线性组合模型用于200km以下的中距离参考站网络,实现了优于2~5cm的流动用户位置电离层延迟误差改正精度,证明是较优的电离层改正模型。

    The experimental results show that the linear interpolation model and the linear combination model are more reliable network solution with a correction precision of 2 to 5 cm in reduction of the ionospheric biases for reference station networks with a baseline length of below ( 200 km . )

  13. 密云综合孔径望远镜的电离层折射误差改正

    The correction of ionospheric refraction for Miyun aperture synthesis radiotelescope

  14. 分析电离层掩星误差源,指出电子密度分布的局部非球对称性是电离层掩星的主要误差源。

    The error sources of IRO are analyzed . The spherical symmetry approximation of electron density is the main source of the inversion error .

  15. 这些工作虽然是针对密云米波系统的,但这些方法中的某些考虑可以推广到一般的电离层折射误差改正中去。

    Although these methods presented here are for correcting the ionospheric refraction of Miyun System , yet some ideas of these methods can be used in other cases .

  16. 电离层传输延迟误差是GPS测量中主要误差之一。

    Ionosphere delivering delay error is one of the main errors in the GPS measuring .

  17. 双频雷达高度计电离层色散效应误差分析

    Error analysis of ionospheric dispersion on dual-frequency altimetry

  18. 然而由于GPS卫星信号受到多种干扰误差的影响,如星历误差、卫星钟差、电离层和对流层折射误差以及多路径效应等,使得实际测量结果常常难以达到规定的精度要求。

    However , the GPS satellite signals are easy to be influenced by many kinds of disturbance errors , such as ionospheric and tropospheric errors , orbital errors , clock errors and multipath effect and so on .

  19. 研究了电离层对GPS观测信号的主要影响及电离层折射误差模型,总结了电离层双频改正模型。

    The main effect on the GPS signals of ionosphere and ionospheric refractive model are researched in this paper ; then the dual-frequency corrected model of ionospheric refractive error is concluded .