物态方程
- 网络equation of state;eos
-
II型超新星的物态方程与爆发能量
The Equation of State and Explosive Energy of Type II Supernova
-
Viral法的改进与温度公式及物态方程的研究
Improvement upon Viral Method and Research On the Temperature Formula and the Equation of State
-
NaCl宏观物态方程的理论研究
The Theory Research of ( NaCl ) Macroscopic Equation of State of the Substance
-
超细粉的电爆法制备及其设备的开发II型超新星的物态方程与爆发能量
Preparation of Metallic Ultra-fine Powders Using Wire Electrical Explosion Method and Development of the Apparatus ; The Equation of State and Explosive Energy of Type II Supernova
-
利用MonteCarlo方法计算了电子束的能量沉积,用流体动力学方程计算了热击波的传播,所用物态方程为GRAY三相物态方程。
The energy deposition of electron beam and the wave propagation in aluminum are calculated by using Monte Carlo methods and the hydrodynamic equations , respectively .
-
T-p分布在高压物态方程中的应用
Applications of T-P distribution to equation of state at high pressures
-
采用ThomasFermi(TF)方法,计算了氢的高密度等离子体物态方程,并引入TF等效电离度概念。
The equations of state were calculated with Thomas Fermi ( TF ) method and TF equivalent ionicity was introduced for the plasma hydrogen .
-
研究核物态方程;(3)研究夸克胶子等离子体(QGP);
The study of the nuclear equation of state and of quark-gluon plasma ( QGP );
-
当维数n≥6时,如果仍用London理论,巨配分函数发散,此时物态方程及热力学函数将无意义。
When the dimension n ≥ 6 , if London 's theory still be used the grand partition function will be divergent , and in this case the equations of state and thermodynamics functions will be nonsense .
-
爆轰产物物态方程(Ⅱ)&爆轰的ZND理论不成立吗?(下)
Equation of state of detonation product (ⅱ) & does znd theory of detonation fail ?( b )
-
由London理论得知,当维数n<6时,不同维数的经典非理想气体的物态方程的形式基本一样,且与能谱关系无关;
When the dimension n ( n < 6 ) is different , we get conclusions , by the London 's theory , that the equations of state for classical non-ideal gases are similar and have nothing to do with the relation between energy and spectrum .
-
综述了Ⅱ型超新星爆发过程中涉及到的物理因素和数值计算方法,例如电子俘获,物态方程,差分格式以及GR流体动力学方法。
Besides , we summarized physical factors and numerical calculation method in type ⅱ supernova , such as electronic captured and the equation of state , array of difference and the general relativity hydrodynamic method .
-
本文(l)给出了这种物态方程的一种统计力学推证,给出了方程中物质参数R的微观定义,从而使该方程能不再依赖于Gruneisen物态方程而独立存在;
A statistical mechanics proof had been presented , so the substance parameter R in the EOS first time has its virtual definition and then can be used without any other EOS .
-
这既检验了这种理论估算方法,也再次检验了爆轰的ZND理论和两相的排平物态方程,也是对实验方法的一种支持。
This not only tested the calculation method , but also the ZND theory of detonation and the two phase R T EOS again .
-
从位力(Virial)理论和相似假设出发,建立了爆轰产物物态方程,命名为VLW物态方程。
Based on the virial theorem and the similarity assumption a new equation of state for detonation products , VLW EOS , has been proposed .
-
还计算了在M-S势作用下的中子物质出现铁磁相变的临界密度、含有铁磁相变的物态方程及中子星模型。
For neutron matter with M-S interaction , the critical density of the ferromagnetic transition , the equation of state and the neutron star models are calculated .
-
neisen方程或其他物态方程的重要参考线,改进对偏离Hugoniot状态(off-Hugoniot)的认识。
Isentropes can be used as the reference of Gruneisen EOS and other EOS forms , whose knowledge is very important for understanding the off - Hugoniot states .
-
本文给出了一种用冲击压缩数据计算Gruneisen物态方程参数的方法。
In this paper , a new method for calculating the - parameters in the Mie-Gruneisen equation of state from shock compression data is presented .
-
该文从固态物质的物态方程出发,找到了根据共价效应修正因子N和晶场参数Dq随温度变化的关系,从而满意地解释了Zn1-xMnxSe光谱的温度移位。
In this paper , the relationship that the average covalency reduction factor N and the crystal field parameter D q alter with temperature from the equation of solid has been found . Therefore the temperature dependence spectrum in Zn 1-x Mn xSe may be explained satisfactorily .
-
结果表明,当系统堆垛分数在0.05~0.25时,得到的物态方程与计算机模拟结果基本一致,优于二阶集团展开及PY近似的结果。
When the volume fraction changes from 0.05 to 0.25 , the result of the state equation approaches the result from computer simulation and is better than those from lower term virial expansion and P Y approximation .
-
0K物态方程由广义梯度近似下的密度泛函理论计算,粒子热运动的贡献由平均场模型计算。
The equation of state at zero temperature is computed based on density-functional theory within the generalized-gradient approximation . The vibrational contributions are calculated by the mean-field potential model .
-
夸克-胶子等离子体的演化由相对论流体力学和熵密度的物态方程描述,而2πHanburyBrownTwiss(HBT)关联函数由量子几率振幅的路径积分公式计算。
The quark-gluon plasma evolution is described by relativistic hydrodynamics with the equation of state of entropy density . The two-pion Hanbury-Brown-Twiss ( HBT ) correlation functions are calculated using quantum probability amplitudes in a path-integral formalism .
-
Grüneisen参数是凝聚态物质的一个重要参数,它几乎包含了物态方程的全部信息,对研究物质的热力学性质、弹性和非谐振性有着重要意义。
Gruneisen parameter γ is a very important parameter of condensed matters , which includes almost all information of the matter . The study of γ is very important for properties of thermodynamics , elasticity , non-syntony of the matter .
-
计算结果表明,以Appy经验物态方程导出的等熵压缩线与以线性冲击绝热线导出的等熵压缩线接近,在200GPa压力范围内两者相差不到1.5%。
The calculated results show that the compression isentrope of aluminum under 200 GPa calculated with Appy EOS approaches to that with the linear Hugoniot , where the error is less than 1.5 % .
-
在中等压力范围内(对于金属铝大约为50~200GPa),选择线性关系表示的冲击绝热线为参考线和Appy物态方程所计算得到的等熵压缩线与实际情况更加接近;
In the intermediate pressure range ( about 50GPa ~ 200GPa ), the compression isentropes calculated from the linear Hugoniot as the reference of Gruneisen EOS and the Appy EOS are much more approach to the experimental data or reference data .
-
从冲击绝热线和Gruneisen物态方程出发,导出了与冲击绝热线相容的等熵线,进而给出了沿等熵压缩线和等温压缩线以及冲击绝热线的声速的计算公式。
In this paper , from the shock adiabatics and the Gruneisen equation of state , an isentropic , which corresponds to shock adiabatics , is delivered , and the formulas of calculating sound velocity along isentropic and isothermal compression , as well as the Hugoniot curves , are presented .
-
作物态方程的自由体积理论
Free Volume Theory Applied to the Formation of Equations of State
-
非理想气体的第二维里系数及物态方程
The second virial coefficient and the state equation of nonideal gases
-
热电子对多孔金属物态方程贡献的数值计算
A Method of Calculating Thermo-electronic Contribution for Porous Metal 's E.O.S
-
氢的高密度等离子体物态方程
The equation of state for the plasma hydrogen at high density