概率逻辑

ɡài lǜ luó ji
  • probabilistic logic
概率逻辑概率逻辑
  1. 概率逻辑可能世界的Petri网模型

    A Petri net model for the generation of possible worlds of probabilistic logic

  2. 因此我们引入Bundy的发生率计算理论,它是从命题逻辑发展而来的概率逻辑。

    So Bundy introduced incidence calculus , which is a probabilistic logic developed from prepositional logic .

  3. 基于FrankT/S范数的柔性概率逻辑算子研究

    Research on Flexible Probability Logic Operator Based on Frank T / S Norms

  4. ■Rough集与其它数据推理讨论Rough集与概率逻辑,贝叶塞规则,证据理论和模态逻辑的关系,指出它们之间存在的一致性。

    Rough sets and other data reasoning In this paper , the relationships between rough sets and probability logic , Bayes ' rule , Dempster-Shafer evidence theory , modal logic are discussed respectively .

  5. 在分析Internet上软件Agent技术应用存在问题的基础上,提出了加权的统计启发式搜索算法和概率逻辑神经网络的AZ模型,并应用数学方法对算法进行了详细证明。

    Under the analysis of software agent 's techniques on Internet applications , two algorithms named Weighted Statistical Heuristic Search and AZ Model of Probability logic Neural Networks are proposed . Details of the two algorithms are proved using mathematic methods .

  6. 本文以马尔科夫链理论为工具,研究PLN(概率逻辑神经元)网络的定量性质。

    In this paper , the main behaviors of PLN ( Probabilistic Logic Neuron ) networks are investigated quantitatively using Markov chain theory .

  7. J.Cohen归纳概率逻辑批判

    Critique of J. Cohen 's Inductive Logic

  8. 论归纳逻辑的局部辩护和适用范围&兼评J.Cohen的归纳概率逻辑理论

    The Local Justification and Applicable Region of the Inductive Logic & with a comment on J. Cohen 's theory of inductive probability logic

  9. 本文将给出概率逻辑神经网络(PLNN)的一般结构、学习算法及其模拟实现的情况。

    The paper will introduce the general structure , learning algorithm and simulation of PLNN and discuss the accomplishment and the analysis of multilayered associative network .

  10. 针对Nilsson概率逻辑推理在计算规模方面存在的问题,本文给出了公式集按类超树结构分解的计算模型,并证明了分解算法的完备性。

    In order to reduce the complexity in the calculation model of Nilsson 's probabilistic logic , the authors presented a new approach with the super tree like decomposition model in this paper , and proved the completeness theorem of the given method .

  11. Nilsson的概率逻辑存在着一些严峻的问题,例如高计算复杂度,推理的盲目性,比较典型的是,推理导致巨大的概率区间。

    Probabilistic logic was proposed by Boole ~ [ 42 ] and rediscovered by Nilsson ~ [ 12 ] There exist some severe problems in Nilsson 's probabilistic logic , for example , high computational complexity and inferential vacuousness-inferences typically lead to large probability intervals .

  12. δ推理算子的提出,提供了一条新的研究归纳逻辑和概率逻辑的方法。

    It shows another approach to study inductive and probabilistic reasoning .

  13. 相信逻辑公式的影响范围与概率逻辑公式的概率

    Incidence of belief logical formula and probability of probabilistic logic formula

  14. 概率逻辑推理的弱相关分解方法

    A weak - dependent - decomposition approach for probabilistic logic

  15. 概率逻辑神经元网络收敛性的分析

    The analysis of the convergence of probabilistic logic neuron networks

  16. 概率逻辑类超树结构分解计算模型的完备性

    The Completeness of the Super tree like Decomposition Model for Probabilistic Logic

  17. 概率逻辑神经元网络的记忆容量

    On memory capacity of the probabilistic logic neuron network

  18. 基于贝叶斯网的一种概率逻辑推理方法

    A method of probabilistic logic reasoning on Bayesian networks

  19. 推理树概率逻辑公式集有效赋值列数计算

    Calculation the Number of Valid Assignments of the Formula Set in Probabilistic Logic

  20. 概率逻辑含多重原子交集分解模型的可靠性

    Validity of the decomposition model with conjunction of multi atomic sets for probabilistic logic

  21. 作为多值逻辑的概率逻辑;

    As many-valued logic : probability logic .

  22. 概率逻辑模型与学习研究进展

    Advances in Probabilistic Logic Model and Learning

  23. 人工智能科学中的概率逻辑

    Probabilistic logic in Artificial Intelligence Science

  24. 语言交际的概率逻辑分析

    Probability Logic Analysis of Linguistic Communication

  25. 概率逻辑的研究

    The Study of Probabilistic Logic

  26. 亚当斯概率逻辑是研究有效推理中概率传递的一种逻辑。

    Adams probability logic is a logical system that studies the transmission of probability through valid inferences .

  27. 新培根主义归纳概率逻辑较好地满足了知识增长的要求,展示了科学知识创新的途径。

    Neo-Baconion logic of probability filled the requirements of knowledge growth and explored the way of knowledge innovation .

  28. 由于受概率逻辑发展的启发,卡尔纳普用概率作为研究归纳逻辑的基础。

    Carnap gained inspiration from the development of probability logic , so he made " probability " a basis of his inductive theory .

  29. 概率逻辑是用逻辑推理的方法解决因随机性引起的不确定性推理问题。

    Probabilistic Logic makes use of the method of logic reasoning to deal with the uncertain reasoning , which is cause by randomicity .

  30. 然后介绍了用于人机一体化系统安全性建模的三种数据方法:概率逻辑法、马尔柯夫过程法和随即参数函数法。

    Then , three safety modeling methods of human-machine system are introduced : probability logic method , Markov process method and random parameter function method .