核函数
- kernel function
-
华罗庚域上的Bergman核函数、比较定理和Einstein-k(?)hler度量
The Bergman Kernel Function on the Hua Domain , the Comparison Theorem and Einstein-K (?) hler Metric on Super-Cartan Domain of the First Type
-
基于自适应更新非对称核函数的均值漂移目标跟踪。
Mean shift object tracking based on active asymmetric kernel function .
-
其次,核函数和分类参数(包括惩罚系数C,核函数参数)的选择没有特别好的办法,应用时不容易找到最优的核函数和分类参数;
Secondly , there are no good methods for the choice of optimal kernel function and parameters .
-
基于混合核函数PCR方法的工业过程软测量建模
Studies on Soft Sensor Modeling Using Mixtures of Kernels PCR
-
基于K型核函数的支持向量机
Support Vector Machine Based K-type Kernel Function
-
主要研究了适于解决高维问题的支持向量机(SVM)方法在高光谱图像分类中的应用,分析了核函数选择及参数确定问题。
The problems of kernel function selection and parameter determination are analyzed .
-
基于核函数距离测度的加权模糊C均值聚类与Markov空域约束的快速鲁棒图像分割
Fast Robust Image Segmentation Based on Weighed Fuzzy C-Means Clustering with Kernel-Induced Distance Measurement and Markov Spacial Constraint
-
基于修正核函数的SVM分类器研究
Support Vector Machines Classifier Based on Modifying Kernel Function
-
基于多个混合核函数的SVM决策树算法设计
Designing the algorithm of SVM decision tree based on many mixture of kernels
-
基于核函数PCA的非线性过程实时监控方法
On-Line Monitoring of Nonlinear Processes Based on Kernel Principal Component Analysis
-
混合核函数的引入,使得SVM又多了一个可调参数。
With the introduction of mixed kernels , SVM has one more adjustable parameter .
-
支撑向量机(SupportVectorMachines,简称SVM)的成功引起了人们对核函数方法的兴趣。
The appeal of kernel-based methods has been arisen in recent years by the success of support vector machines ( SVM ) .
-
基于Gabor特征量和核函数判决分析方法的人脸识别
Face recognition based on Gabor features and kernel discriminant analysis method
-
提出了一个可行的支持向量核函数&K型核函数,由此得到了K型支持向量机。
A new K-type kernel is proposed , and then a K-type support vector machine ( KSVM ) is obtained in this study .
-
本文给出了一种新的计算方法,能处理核函数衰减很慢且r很大的问题,方法简单,高效率,精度高。
It can deal with the problems arising in the former two methods and it is a simple , efficient method with high accuracy .
-
深入研究了在高维多光谱数据分类中,SVM的性能与核函数类型、核函数参数、支持向量(SupportVector&SV)、训练样本数目、数据维数等之间的关系。
The relation between the performance of SVM and kernel function , support vector , training set , data dimension and so on is studied .
-
基于核函数的SOM及在齿轮故障聚类识别中的应用
Kernel Self-Organizing Maps and Its Application in Gear Failures Clustering and Recognition
-
实验讨论了在应用SVM算法对字符进行识别时,核函数K和惩罚因子C的选择对识别率的影响问题。
In this experiment , the problem of the choice of kernel function and parameter C - the penalty term for misclassification is discussed .
-
结果显示,具有二项式(Poly-nomial)和RBF(Radialbasisfunction)核函数的SVM,其分类准确度比其他的SVM约高3%。
The precision of classification of SVM with poly-normal and radial basis function will be about 3 % higher than that of other kernel function .
-
基于IPSO的混合核函数SVM参数优化及应用
Parameter Selection and Application of SVM with Mixture Kernels Based on IPSO
-
域W1上的Bergman核函数
Bergman kernel functions on domain w_i
-
本研究小组早期提出了对支持向量机(SVM)的多项式核函数及支持向量回归机(SVR)的Bn-splines核函数的几何修正方法。
Our research group have proposed an information-geometrical method to modify the polynomial kernel function and the Bn - splines kernel function .
-
经过与线性核函数及Sig-moid核函数的对比,选用基于径向基函数(RBF)作为核函数,在分析预测误差和模型参数关系的基础上,选择了合适的参数;
By analyzing the relationship between the error margin of prediction and the model parameters , the proper parameters were chosen .
-
本文针对SVM的模型、核函数的构造、SVM参数选择和孤立点检测四个方面进行了研究。
This paper does the researches on four areas : SVM model , kernel function constructing , SVM parameter selection and outlier detection .
-
实验结果表明,使用一对一分类策略和RBF核函数时,可以达到较好的分类效果。
Experimental results indicate that ' one to one ' classification strategy and RBF kernel function can reach an ideal classification effect .
-
基于核函数的PCA在QAR数据分析中的应用
Application of PCA based on kernel function in analysis of QAR data
-
第三类华罗庚域的Bergman核函数
The Bergman kernels on Hua domain of the third type
-
总结了设计支持向量回归机的模型选择方面的进展,并通过一维回归问题的计算机仿真阐述了RBF核函数的优越性以及比较验证了具有最优特性的一组模型参数。
The computer simulation results of one-dimensional regression problems describes the advantages of RBF kernel function and a set of optimum model parameters .
-
其中,RBF核函数是应用最广泛的核函数,且有两个参数:惩罚因子C和核参数γ。
The RBF kernel function is most widely used in SVM . There are two parameters in this function : the penalty parameter C and the kernel parameter γ .
-
自均衡类椭圆函数滤波器第三类华罗庚域的Bergman核函数
Self-equalized pseudoelliptic filter the Bergman kernels on Hua domain of the third type