拉格朗日点
- 网络Lagrange point;lagrangian point
-
日-地系拉格朗日点任务及其转移轨道设计方法
Missions of Sun-Earth Lagrange Points and Design Method of Transfer Trajectory
-
进而,基于日地系共线拉格朗日点附近无控运动的周期性,设计了保持控制方案,对传统靶点法和基于周期轨道单值矩阵的Floquet法进行了仿真研究。
Then , after analyzing the periodic characters of the uncontrolled movements near the Sun-Earth collinear Lagrange points , the station keeping schemes are designed . The target-point method and Monodromy matrix based Floquet method are presented with simulations .
-
该探测器将停留在一个叫拉格朗日点的地区附近,太阳系有五个类似这样的点。
The probe will stay near an area called a Lagrangian point-there are five similar points .
-
由于拉格朗日点的独特空间位置,它附近的编队研究对深空探测有着很重要的意义。
The formation flying around Lagrange points will benefit deep space exploration greatly due to the special location of the Lagrange points .
-
然后基于不变流形理论和庞加莱截面方法,设计了不同拉格朗日点间转移轨道。
Then on the basis of invariant manifold theory and Poincar é section , a transfer trajetory between L1 and L2 of the Earth-Moon system was given .
-
日-地(月)系拉格朗日L1点及晕(Halo)轨道应用
Application of Lagrange L1 Point and Halo Orbits in Sun-Earth ( Moon ) System
-
关于拉格朗日余项中值点的渐近性
On Asymptotic Behavior of the Middle Value Point to the Langrange Remainder
-
修正的增广拉格朗日函数内点拟牛顿法
Interior-point Quasi-Newton Method of Modified Augmented Lagrangian Function
-
传统数学中,在拉格朗日算子的鞍点、优化问题的最优解、非线性Kuhn-Tucker条件和拉格朗日算子的极小极大定理之间存在着等价性。
In traditional mathematics , there is the equivalence among optimal solutions of optimization problems , the nonlinear Kuhn-Tucker condition , the saddle points and the minimax condition of Lagrange operators .
-
约束优化问题修正拉格朗日函数的鞍点与最优路径的收敛
On Saddle Point of Augmented Lagrangian for Constrained Optimization and the Convergence of the Optimal Path